
End-to-End Formal Verification of
Ethereum 2.0 Deposit Smart Contract

Daejun Park1, Yi Zhang1,2, and Grigore Rosu1,2

1 Runtime Verification, Inc.
daejun.park@runtimeverification.com

2 University of Illinois at Urbana-Champaign
{yzhng173,grosu}@illinois.edu

Abstract. We report our experience in the formal verification of the
deposit smart contract, whose correctness is critical for the security of
Ethereum 2.0, a new Proof-of-Stake protocol for the Ethereum blockchain.
The deposit contract implements an incremental Merkle tree algorithm
whose correctness is highly nontrivial, and had not been proved before.
We have verified the correctness of the compiled bytecode of the deposit
contract to avoid the need to trust the underlying compiler. We found
several critical issues of the deposit contract during the verification pro-
cess, some of which were due to subtle hidden bugs of the compiler.

1 Introduction

The deposit smart contract [14] is a gateway to join Ethereum 2.0 [15] that
is a new sharded Proof-of-Stake (PoS) protocol which at its early stage, lives
in parallel with the existing Proof-of-Work (PoW) chain, called Ethereum 1.x
chain. Validators drive the entire PoS chain, called Beacon chain, of Ethereum
2.0. To be a validator, one needs to deposit a certain amount of Ether, as a
“stake”, by sending a transaction (over the Ethereum 1.x network) to the deposit
contract. The deposit contract records the history of deposits, and locks all the
deposits in the Ethereum 1.x chain, which can be later claimed at the Beacon
chain of Ethereum 2.0.3 Note that the deposit contract is a one-way function;
one can move her funds from Ethereum 1.x to Ethereum 2.0, but not vice versa.

The deposit contract, written in Vyper [19], employs the Merkle tree [30] data
structure to efficiently store the deposit history, where the tree is dynamically
updated (i.e., leaf nodes are incrementally added in order from left to right)
whenever a new deposit is received. The Merkle tree employed in this contract
is very large: it has height 32, so it can store up to 232 deposits. Since the size
of the Merkle tree is huge, it is not practical to reconstruct the whole tree every
time a new deposit is received.

To reduce both time and space complexity, thus saving the gas4 cost signif-
icantly, the contract implements an incremental Merkle tree algorithm [6]. The
3 This deposit process will change at a later stage.
4 In Ethereum, gas refers to the fee to execute a transaction or a smart contract on
the blockchain. The amount of gas fee depends on the size of the payloads.



2 D. Park et al.

incremental algorithm enjoys O(h) time and space complexity to reconstruct
(more precisely, compute the root of) a Merkle tree of height h, while a naive al-
gorithm would require O(2h) time or space complexity. The efficient incremental
algorithm, however, leads to the deposit contract implementation being unintu-
itive, and makes it non-trivial to ensure its correctness. The correctness of the
deposit contract, however, is critical for the security of Ethereum 2.0, since it is
a gateway for becoming a validator. Considering the utmost importance of the
deposit contract for the Ethereum blockchain, formal verification is demanded
to ultimately guarantee its correctness.

In this paper, we present our formal verification of the deposit contract.5 The
scope of verification is to ensure the correctness of the contract bytecode within
a single transaction, without considering transaction-level or off-chain behaviors.
We take the compiled bytecode as the verification target to avoid the need to
trust the compiler.6

We adopt a refinement-based verification approach. Specifically, our verifica-
tion effort consists of the following two tasks:

– Verify that the incremental Merkle tree algorithm implemented in the deposit
contract is correct w.r.t. the original full-construction algorithm.

– Verify that the compiled bytecode is correctly generated from the source code
of the deposit contract.

Intuitively, the first task amounts to ensuring the correctness of the contract
source code, while the second task amounts to ensuring the compiled bytecode
being a sound refinement of the source code (i.e., translation validation of the
compiler). This refinement-based approach allows us to avoid reasoning about
the complex algorithmic details, especially specifying and verifying loop invari-
ants, directly at the bytecode level. This separation of concerns helped us to save
a significant amount of verification effort. See Section 2 for more details.

Challenges. Formally verifying the deposit contract was challenging. First, the
algorithm employed in the contract is sophisticated and its correctness is not
straightforward to prove. Indeed, we found a critical bug in the algorithm im-
plementation which had been not detected by existing tests. (Section 5.1)

Second, we had to take the compiled bytecode as the verification target, which
is much larger (consisting of ∼3,000 instructions) and more complex than the
source code. The source-code-level verification was not accepted by the customer
for the end-to-end correctness guarantee, especially considering the fact that the
compiler is not mature enough [11]. Indeed, we found several new critical bugs
in the compiler during the formal verification process. (Section 5.2)

Third, we had to consider not only the functional correctness, but also secu-
rity properties of the contract. That is, we had to identify the behaviors of the

5 This was done as part of a contract funded by the Ethereum Foundation [16].
6 Indeed, we found several new critical bugs [41,42,43,44] of the Vyper compiler in the
process of formal verification. See Section 5 for more details.



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 3

contract in exceptional cases, and check if they are exploitable. We found a bug
of the contract in case that it receives invalid inputs. (Section 5.3)

Finally, we had to take into account potential future changes in the Ethereum
blockchain system (called hard-forks). That is, we had to verify that the compiled
bytecode will work not only in the current system, but also in any future version
of the system that employs a different gas fee schedule. Considering such poten-
tial changes of the system required us to generalize the semantics of bytecode
execution. We also found a bug regarding that. (Section 5.4)

2 Our Refinement-Based Verification Approach

We illustrate our refinement-based formal verification approach used in the de-
posit contract verification. We present our approach using the K framework and
its verification infrastructure [51,54,45], but it can be applied to other program
verification frameworks.

Let us consider a sum program that computes the summation from 1 to n:

int sum(int n) { int s = 0; int i = 1;
while(i <= n) { s = s + i; i = i + 1; } return s; }

Given this program, we first manually write an abstract model of the program
in the K framework [51]. Such a K model is essentially a state transition system
of the program, and can be written as follows:

rule: sum(n) ⇒ loop(s: 0, i: 1, n: n)
rule: loop(s: s, i: i, n: n) ⇒ loop(s: s+ i, i: i+ 1, n: n) when i ≤ n
rule: loop(s: s, i: i, n: n) ⇒ return(s) when i > n

These transition rules correspond to the initialization, the while loop, and the
return statement, respectively. The indexed tuple (s: s, i: i, n: n) repre-
sents the state of the program variables s, i, and n.7

Then, given the abstract model, we specify the functional correctness prop-
erty in reachability logic [53], as follows:

claim: sum(n) ⇒ return(n(n+1)
2

) when n > 0

This reachability claim says that sum(n) will eventually return n(n+1)
2 in all

possible execution paths, if n is positive. We verify this specification using the
K reachability logic theorem prover [54], which requires us only to provide the
following loop invariant:8

invariant: loop(s: i(i−1)
2

, i: i, n: n) ⇒ return(n(n+1)
2

) when 0 < i ≤ n+ 1

7 Note that this abstract model can be also automatically derived by instantiating
the language semantics with the particular program, if a formal semantics of the
language is available (in the K framework).

8 The loop invariants in reachability logic mentioned here look different from those
in Hoare logic. See the comparison between the two logic proof systems in [54,
Section 4]. These loop invariants can be also seen as transition invariants [47].



4 D. Park et al.

Once we prove the desired property of the abstract model, we manually refine
the model to a bytecode specification, by translating each transition rule of the
abstract model into a reachability claim at the bytecode level, as follows:

claim: evm(pc: pcbegin, calldata: #bytes(32, n), stack: [], · · · )
⇒ evm(pc: pcloophead, stack: [0, 1, n], · · · )

claim: evm(pc: pcloophead, stack: [s, i, n], · · · )
⇒ evm(pc: pcloophead, stack: [s+ i, i+ 1, n], · · · ) when i ≤ n

claim: evm(pc: pcloophead, stack: [s, i, n], · · · )
⇒ evm(pc: pcend, stack: [], output: #bytes(32, s), · · · ) when i > n

Here, the indexed tuple evm(pc:_, calldata:_, stack:_, output:_) repre-
sents (part of) the Ethereum Virtual Machine (EVM) state, and #bytes(N,V )
denotes a sequence of N bytes of the two’s complement representation of V .

We verify this bytecode specification against the compiled bytecode using
the same K reachability theorem prover [54,45]. Note that no loop invariant is
needed in this bytecode verification, since each reachability claim involves only a
bounded number of execution steps—specifically, the second claim involves only
a single iteration of the loop.

Then, we manually prove the soundness of the refinement, which can be
stated as follows: for any EVM states σ1 and σ2, if σ1 ⇒ σ2, then α(σ1)⇒ α(σ2),
where the abstraction function α is defined as follows:

α(evm(pc: pcbegin, calldata: #bytes(32, n), stack: [], · · · )) = sum(n)
α(evm(pc: pcloophead, stack: [s, i, n], · · · )) = loop(s: s, i: i, n: n)
α(evm(pc: pcend, stack: [], output: #bytes(32, s), · · · )) = return(s)

Putting all the results together, we finally conclude that the compiled byte-
code will return #bytes(32,n(n+1)

2 ).
Note that the abstract model and the compiler are not in the trust base,

thanks to the refinement, while the K reachability logic theorem prover [54,45]
and the formal semantics of EVM [24] are.

3 Correctness of the Incremental Merkle Tree Algorithm

In this section, we briefly describe the incremental Merkle tree algorithm of the
deposit contract, and formulate its correctness. Both the formalization of the
algorithm and the formal proof of the correctness are presented in Appendix A.

A Merkle tree [30] is a perfect binary tree [34] where leaf nodes store the hash
of data, and non-leaf nodes store the hash of their children. A partial Merkle tree
up-to m is a Merkle tree whose first (leftmost)m leaves are filled with data hashes
and the other leaves are empty and filled with zeros. The incremental Merkle
tree algorithm takes as input a partial Merkle tree up-to m and a new data
hash, and inserts the new data hash into the (m+1)th leaf, resulting in a partial
Merkle tree up-to m+ 1.

Figure 1 illustrates the algorithm, showing how the given partial Merkle tree
up-to 3 (shown in the left) is updated to the resulting partial Merkle tree up-to



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 5

1 2 3 0

#1,2 #3,0

#1,2, 
 3,0

0 0 0 0

#0,0 #0,0

#0,0, 
 0,0

#1,2, 
 3,0,…

branch

zerohashes

updated

untouched

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

1 2 3 4

#1,2 #3,4

#1,2, 
 3,4

0 0 0 0

#0,0 #0,0

#0,0, 
 0,0

#1,2, 
 3,4,…

branch

zerohashes

updated

untouched

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

1 2 3 0

#1,2 #3,0

#1,2, 
 3,0

0 0 0 0

#0,0 #0,0

#0,0, 
 0,0

#1,2, 
 3,0,…

branch

zerohashes

updated

untouched

)

Fig. 1. Illustration of the incremental Merkle tree algorithm. The left tree is updated
to the right tree by inserting a new data hash in the fourth leaf (node 4). Only the path
from the new leaf to the root (i.e., the gray nodes) are computed by the algorithm (hence
linear-time). The bold-lined (and bold-dotted-lined) nodes denote the branch (and
zero_hashes) array, respectively, which are only nodes that the algorithm maintains
(hence linear-space). The # symbol denotes the hash value, e.g., “#1,2” (in node 9)
denotes “hash(1,2)”, and “#1,2,3,4” (in node 13) denotes “hash(hash(1,2),hash(3,4))”.
Node numbers are labeled in the upper-right corner of each node.

4 (in the right) when a new data hash is inserted into the 4th leaf node. Here
are a few key observations of the algorithm.

1. The only difference between the two Merkle trees is the path from the new
leaf node (i.e., node 4) to the root. All the other nodes are identical between
the two trees.

2. The path can be computed by using only the left (i.e., node 3 and node 9)
or right (i.e., node 14) sibling of each node in the path. All the other nodes
are not needed for the path computation.

3. All the left siblings (i.e., node 3 and node 9) of the path are “finalized” in that
they will never be updated in any subsequent execution of the algorithm. All
the leaves that are a descendant of the finalized node are non-empty.

4. All the right siblings (i.e., node 14) are zero-hashes, that is, 0 for leaf nodes
(at level 0), “hash(0,0)” for nodes at level 1, “hash(hash(0,0),hash(0,0))” for
nodes at level 2, and so on. These zero-hashes are constant.

Now we describe the algorithm. To represent a Merkle tree of height h, the
algorithm maintains only two arrays of length h, called branch and zero_hashes
respectively, that store the left and right siblings of a path from a new leaf node
to the root. When inserting a new data hash, the algorithm computes the path
from the new leaf node to the root. Each node of the path can be computed
in constant time, by retrieving only its left or right sibling from the branch or
zero_hashes array. After the path computation, the branch array is updated to
contain all the left siblings of a next new path that will be computed in the next
run of the algorithm. Here the branch array update is done in constant time,
since only a single element of the array needs to be updated, and the element
has already been computed as part of the path computation.9 Note that the
zero_hashes array is computed once at the very beginning when all the leaves
are empty, and never be updated during the lifetime of the Merkle tree.
9 See Appendix A for more details about updating the branch array.



6 D. Park et al.

Complexity. Both the time and space complexity of the algorithm is linear in
the tree height h. The space complexity is linear, because the size of the branch
and zero_hashes arrays is h, and no other nodes are stored by the algorithm.
The time complexity is also linear. For the path computation, the length of the
path is h, and each node can be computed in constant time by using the two
arrays. The branch array update can be also done in constant time as explained
earlier.

Implementation and optimization. Figure 2 shows the pseudocode implementa-
tion of the incremental Merkle tree algorithm [6] that is employed in the deposit
contract [14]. It consists of two main functions: deposit and get_deposit_root.
The deposit function takes as input a new deposit hash, and inserts it into the
Merkle tree. The get_deposit_root function computes and returns the root of
the current partial Merkle tree whose leaves are filled with the deposit hashes
received up to that point.

Specifically, the deposit function fills the first (leftmost) empty leaf node
with a given deposit hash, and updates a single element of the branch array.
The get_deposit_root function computes the tree root by traversing a path
from the last (rightmost) non-empty leaf to the root.

As an optimization, the deposit function does not fully compute the path
from the leaf to the root, but computes only a smaller partial path from the
leaf to the node that is needed to update the branch array. Indeed, for all odd-
numbered deposits (i.e., 1st deposit, 3rd deposit, · · · ), such a partial path is
empty, because the leaf node is the one needed for the branch array update.
In that case, the deposit function returns immediately in constant time. For
even-numbered deposits, the partial path is not empty but still much smaller
than the full path in most cases. This optimization is useful when the tree root
computation is not needed for every single partial Merkle tree. Indeed, in many
cases, multiple deposit hashes are inserted at once, for which only the root of
the last partial Merkle tree is needed.

Correctness. Consider a Merkle tree of height h employed in the deposit contract.
Suppose that a sequence of deposit function calls are made, say deposit(v1),
deposit(v2), · · · , and deposit(vm), where m < 2h. Then, the function call
get_deposit_root() will return the root of the Merkle tree whose leaves are
filled with the deposit data hashes v1, v2, · · · , vm, respectively, in order from
left to right, starting from the leftmost one.

Note that the correctness statement requires the condition m < 2h, that is,
the rightmost leaf must be kept empty, which means that the maximum number
of deposits that can be stored in the tree using this incremental algorithm is
2h − 1 instead of 2h. See Section 5.1 for more details.

The proof of the correctness is presented in Appendix A.

Remark. Since the deposit function reverts when deposit_count ≥ 2TREE_HEIGHT−
1, the loop in the deposit function cannot reach the last iteration, thus the loop
bound (in line 17 of Figure 2) can be safely decreased to TREE_HEIGHT− 1.



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 7

1 # globals
2 zero_hashes: int[TREE_HEIGHT] = {0} # zero array
3 branch: int[TREE_HEIGHT] = {0} # zero array
4 deposit_count: int = 0 # max: 2^TREE_HEIGHT - 1
5

6 fun init() -> unit:
7 i: int = 0
8 while i < TREE_HEIGHT - 1:
9 zero_hashes[i+1] = hash(zero_hashes[i], zero_hashes[i])

10 i += 1
11

12 fun deposit(value: int) -> unit:
13 assert deposit_count < 2^TREE_HEIGHT - 1
14 deposit_count += 1
15 size: int = deposit_count
16 i: int = 0
17 while i < TREE_HEIGHT:
18 if size % 2 == 1:
19 break
20 value = hash(branch[i], value)
21 size /= 2
22 i += 1
23 branch[i] = value
24

25 fun get_deposit_root() -> int:
26 root: int = 0
27 size: int = deposit_count
28 h: int = 0
29 while h < TREE_HEIGHT:
30 if size % 2 == 1: # size is odd
31 root = hash(branch[h], root)
32 else: # size is even
33 root = hash(root, zero_hashes[h])
34 size /= 2
35 h += 1
36 return root

Fig. 2. Pseudocode implementation of the incremental Merkle tree algorithm employed
in the deposit contract [14].



8 D. Park et al.

4 Bytecode Verification of the Deposit Contract

Now we present the formal verification of the compiled bytecode of the deposit
contract. The bytecode verification ensures that the compiled bytecode is a sound
refinement of the source code. This rules out the need to trust the compiler.

As illustrated in Section 2, we first manually refined the abstract model
(in which we proved the algorithm correctness) to the bytecode specification
(Section 4.1). For the refinement, we consulted the ABI interface standard [13]
(to identify, e.g., calldata and output in the illustrating example of Section 2),
as well as the bytecode (to identify, e.g., the pc and stack information).10 Then,
we used the KEVM verifier [45] to verify the compiled bytecode against the
refined specification. We adopted the KEVM verifier to reason about all possible
corner-case behaviors of the compiled bytecode, especially those introduced by
certain unintuitive and questionable aspects of the underlying Ethereum Virtual
Machine (EVM) [59]. This was possible because the KEVM verifier is derived
from a complete formal semantics of the EVM, called KEVM [24]. Our formal
specification and verification artifacts are publicly available at [49].

Let us elaborate on specific low-level behaviors verified against the bytecode.
In addition to executing the incremental Merkle tree algorithm, most of the
functions perform certain additional low-level tasks, and we verified that such
tasks are correctly performed. Specifically, for example, given deposit data,11 the
deposit function computes its 32-byte hash (called Merkleization) according to
the SimpleSerialize (SSZ) specification [18]. The leaves of the Merkle tree store
only the computed hashes instead of the original deposit data. The deposit
function also emits a DepositEvent log that contains the original deposit data,
where the log message needs to be encoded as a byte sequence following the
contract event ABI specification [13]. Other low-level operations performed by
those functions that we verified include: correct zero-padding for the 32-byte
alignment, correct conversions from big-endian to little-endian, input bytes of
the SHA2-256 hash function being correctly constructed, and return values being
correctly serialized to byte sequences according to the ABI specification [13].

We also verified a liveness property that the contract is always able to accept
a new (valid) deposit as long as a sufficient amount of gas is provided. This
liveness is not trivial since it needs to hold even in any future hard-fork where
the gas fee schedule is changed. Indeed, we found a bug of the Vyper compiler
that a hard-coded amount of gas is attached when calling to the memcpy builtin
function (more precisely, the ID precompiled contract). This bug could make the
deposit contract non-functional in a certain future hard-fork where the gas fee
schedule for the builtin function is increased, because the contract will always
fail due to the out-of-gas exception no matter how much gas users supply. This
bug has been reported and fixed [44].
10 However, we want to note that the Vyper compiler can be augmented to extract

such information, which can automate the refinement process to a certain extent.
We leave that as future work.

11 Each deposit data consists of the public key, the withdrawal credentials, the deposit
amount, and the signature of the deposit owner.



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 9

Our formal specification includes both positive and negative behaviors. The
positive behaviors describe the desired behaviors of the contracts in a legitimate
input state. The negative behaviors, on the other hand, describe how the con-
tracts handle exceptional cases (e.g., when benign users feed invalid inputs by
mistake, or malicious users feed crafted inputs to take advantage of the con-
tracts). The negative behaviors are mostly related to security properties.

4.1 Summary of Bytecode Specification

We summarize the formal specification of the deposit contract bytecode that we
verified. The full specification can be found at [48].

Constructor init updates the storage as follows:

zero_hashes[i]← ZH(i) for all 1 ≤ i < 32

where ZH(i) is a 32-byte word that is recursively defined as follows:

ZH(i+ 1) = hash(ZH(i) ++ ZH(i)) for 0 ≤ i < 31

ZH(0) = 0

where hash denotes the SHA2-256 hash function, and ++ denotes the byte con-
catenation.

Function get_deposit_count returns LE64(deposit_count), where LE64(x)
denotes the 64-bit little-endian representation of x (for 0 ≤ x < 264). That
is, for a given x = Σ0≤i<8(ai · 256i), LE64(x) = Σ0≤i<8(a7−i · 256i), where
0 ≤ ai < 256. Note that LE64(deposit_count) is always defined because of the
contract invariant of deposit_count < 232. This function does not alter the
storage state.

Function get_deposit_root returns:

hash(RT(32) ++ LE64(deposit_count) ++ 0[24])

where RT(32) is the Merkle tree root, recursively defined as follows:

RT(i+ 1) =

{
hash(branch[i] ++ RT(i)), if

⌊
deposit_count/2i

⌋
is odd

hash(RT(i) ++ zero_hashes[i]), otherwise

}
for 0 ≤ i < 32

RT(0) = 0

and 0[24] denotes 24 zero-bytes. This function does not alter the storage state.



10 D. Park et al.

Function deposit updates the storage state as follows:

deposit_count← old(deposit_count) + 1

branch[k]← ND(k)

where old(deposit_count) denotes the value of deposit_count at the beginning
of the function, k is the smallest integer less than 32 such that

⌊
old(deposit_count)+1

2k

⌋
is odd,12 and ND(K) is a 32-byte word that is recursively defined as follows:

ND(i+ 1) = hash(branch[i] ++ ND(i)) for 0 ≤ i < 32

where ND(0) denotes the deposit data root that is a Merkle proof of the deposit
data that consists of the public key, the withdrawal credentials, the deposit
amount, and the signature. The deposit function also emits a DepositEvent
log that includes both the deposit data and the old(deposit_count) value. For
the full details about the deposit data root computation and the DepositEvent
log, refer to [48].

Negative behaviors. The contract reverts when either a call-value (i.e., msg.value)
or a call-data (i.e., msg.data) is invalid. A call-value is invalid when it is non-
zero but the called function is not payable (i.e., no @payable annotation). A
call-data is invalid when its size is less than 4 bytes, or its first four bytes do
not match the signature of any public functions in the contract. Note that any
extra contents in the call-data are silently ignored.13

The deposit function reverts if the tree is full, the deposit amount is less than
the required minimum amount, or the call-data is not well-formed. See Section 5
for more details about these negative behaviors of the deposit function.

5 Findings and Lessons Learned

In the course of our formal verification effort, we found subtle bugs [37,35,36] of
the deposit contract, as well as a couple of refactoring suggestions [38,39,40] that
can improve the code readability and reduce the gas cost. The subtle bugs of the
deposit contract are partly due to bugs of the Vyper compiler [41,42,43,44] that
we newly found (and reported to the Vyper team) in the verification process.

Below we elaborate on the bugs we found and lessons we learned along the
way. We note that all the bugs of the deposit contract have been reported,
confirmed, and properly fixed in the latest version (v0.11.2).

5.1 Maximum Number of Deposits

In the original version of the contract that we were asked to verify, a bug is
triggered when all of the leaf nodes of a Merkle tree are filled with deposit
12 Note that such k always exists since we have old(deposit_count) < 232 − 1 by the

assertion at the beginning of the function.
13 We have not yet found an attack that can exploit this behavior.

https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy


End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 11

data, in which case the contract (specifically, the get_deposit_root function)
incorrectly computes the root hash of a tree, returning the zero root hash
(i.e., the root hash of an empty Merkle tree) regardless of the content of leaf
nodes. For example, suppose that we have a Merkle tree of height 2, which
has four leaf nodes, and every leaf node is filled with certain deposit data,
say v1, v2, v3, and v4, respectively. Then, while the correct root hash of the
tree is hash(hash(v1, v2), hash(v3, v4)), the get_deposit_root function returns
hash(hash(0, 0), hash(0, 0)), which is incorrect.

Due to the complex logic of the code, it is non-trivial to properly fix this bug
without significantly rewriting the code, and thus we suggested a workaround
that simply forces to never fill the last leaf node, i.e., accepting only 2h − 1
deposits at most, where h is the height of a tree. We note that, however, it is
infeasible in practice to trigger this buggy behavior in the current setting, since
the minimum deposit amount is 1 Ether and the total supply of Ether is less
than 130M which is much smaller than 232, thus it is not feasible to fill all the
leaves of a tree of height 32. Nevertheless, this bug has been fixed by the contract
developers as we suggested, since the contract may be used in other settings in
which the buggy behavior can be triggered and an exploit may be possible. Refer
to [37] for more details.

We also want to note that this bug was quite subtle to catch. Indeed, we
had initially thought that the original code was correct until we failed to write
a formal proof of the correctness theorem. The failure of our initial attempt to
prove the correctness led us to identify a missing premise (i.e., the correctness
condition m < 2h in Section 3) that was needed for the theorem to hold, from
which we could find the above buggy behavior scenario, and suggested the bugfix.
This experience reconfirms the importance of formal verification. Although we
were not “lucky” to find this bug when we had eyeball-reviewed the code, which
is all traditional security auditors do, the formal verification process thoroughly
guided and even “forced” us to find it eventually.

5.2 ABI Standard Conformance of get_deposit_count Function

In the previous version, the get_deposit_count function does not conform to
the ABI standard [13], where its return value contains incorrect zero-padding [35],
due to a Vyper compiler bug [41]. Specifically, in the buggy version of the com-
piled bytecode, the get_deposit_count function, whose return type is bytes[8],
returns a byte sequence of length 96, where the last byte is 0x20 while it should
be 0x00. According to the ABI specification [13], the last 24 bytes must be all
zero, serving as zero-pad for the 32-byte alignment. Thus the return value does
not conform to the ABI standard. This is problematic because any contract
(written in either Solidity or Vyper) that calls to (the buggy version of) the
deposit contract, expecting that the deposit_count function conforms to the
ABI standard, could have misbehaved.14

14 The returned byte sequence, including the incorrect last byte, is copied to the caller’s
memory. If the caller reuses the last byte assuming that it is zero, the garbage value
will be passed around, which may break the business logic of the caller.



12 D. Park et al.

This buggy behavior is mainly due to a subtle Vyper compiler bug [41] that
fails to correctly compile a function whose return type is bytes[n] where n < 16.
This leads to the compiled function returning a byte sequence with insufficient
zero-padding as mentioned above, failing to conform to the ABI standard.

We note that this bug could not have been detected if we did not take the
bytecode as the verification target. This reconfirms that the bytecode-level verifi-
cation is critical to ensure the ultimate correctness (unless we formally verify the
underlying compiler), because we cannot (and should not) trust the compiler.

5.3 Checking Well-Formedness of Calldata

The calldata decoding process in the previous version of the compiled bytecode
does not have sufficient runtime-checks for the well-formedness of calldata. As
such, it fails to detect certain ill-formed calldata, causing invalid deposit data
to be put into the Merkle tree. This is problematic especially when clients make
mistakes and send deposit transactions with incorrectly encoded calldata, which
may result in losing their deposit fund.

Specifically, we found a counter-example ill-formed calldata whose size (196
bytes) is much less than that of well-formed calldata (356 bytes). The problem,
however, is that the deposit function does not reject the ill-formed calldata, but
simply inserts certain invalid (garbage) deposit data in the Merkle tree. Since the
invalid deposit data cannot pass the signature validation later, no one can claim
the deposited fund associated with this, and the deposit owner loses the fund.
Note that this happens even though the deposit function employs assertions at
the beginning of the function that ensures the size of each of the arguments is
correct, which turned out to not work as expected.

This problem would not exist if the Vyper compiler thoroughly generated
runtime checks to ensure the well-formedness of calldata.15 However, since it
was not trivial to fix the compiler to generate such runtime checks, we sug-
gested several ways to improve the deposit contract source code to prevent this
behavior without fixing the compiler. After careful discussion with the deposit
contract development team, we together decided to employ a checksum-based
approach where the deposit function takes as an additional input a checksum
for the deposit data, and rejects any ill-formed calldata using the checksum. The
checksum-based approach is the least intrusive and the most gas-efficient of all
the suggested fixes. For more details of other suggested fixes, refer to [36].

We note that this issue was found when we were verifying the negative be-
haviors of the deposit contract. This shows the importance of having the formal
specification to include not only positive but also negative behaviors.

15 The compiler developers failed to consider the case when the given calldata is not
correctly encoded. For example, while the header of calldata contains offsets (i.e.,
pointers) to the positions of data elements, it could be the case that certain offsets
are beyond the calldata range. In that case, the calldata can be accessed outside its
bounds, due to the missing runtime-checks.



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 13

5.4 Liveness

As mentioned in Section 4, the previous version of the deposit contract fails to
satisfy a liveness property in that it may not be able to accept a new deposit,
even if it is valid, in a certain future hard-fork that updates the gas fee schedule.
This was mainly due to another subtle Vyper compiler bug [44] that generates
bytecode where a hard-coded amount of gas is supplied when calling to certain
precompiled contracts. Although this hard-coded amount of gas is sufficient in
the current hard-fork (code-named Istanbul [17]), it may not be sufficient in a
certain future hard-fork that increases the gas fee schedule of the precompiled
contracts. In such a future hard-fork, the previous version of the deposit contract
will always fail due to the out-of-gas exception, regardless of how much gas is
initially supplied. Refer to [44] for more details.

We admit that we could not find this issue until the deposit contract develop-
ment team carefully reviewed and discussed with us the formal specification [48]
of the bytecode. Initially, we considered only the behaviors of the bytecode in
the current hard-fork, without identifying the requirement that the contract
bytecode should work in any future hard-fork. We identified the missing require-
ment, and found this liveness issue, at a very late stage of the formal verification
process, which delayed the completion of formal verification.

This experience essentially illustrates the well-known problem caused by the
gap between the intended behaviors (that typically exists only informally) by
developers, and the formal specification written by verification engineers. To
reduce this gap, the two groups should work closely together, or ideally, devel-
opers should write their own specifications in the first place. For the former, the
formal verification process should involve developers more frequently. For the
latter, the formal verification tools should become much easier to use without
requiring advanced knowledge of formal methods. We leave both as future work.

5.5 Discussion

Verification effort. The net effort for formal verification took 7 person-weeks
(excluding various discussions with developers, reporting bugs and following-
up, especially for compiler bugs, etc.), where the algorithm correctness proof
took 2 person-weeks, and the bytecode verification took 5 person-weeks. This
includes the time spent on writing specifications as well. The bytecode specifi-
cation consists of ∼1,000 LOC (excluding comments), in addition to auxiliary
lemmas consisting of ∼200 LOC. The size of the source code is ∼100 LOC, and
the number of instructions in the compiled bytecode is ∼3,000.

The verification engineers were highly experienced, holding a doctoral degree
in formal methods, with more than two years of experience in smart contract
verification. The development team, however, was assumed to have no advanced
knowledge of formal verification. The interactions with the development team
were mostly discussions on questionable behaviors of the code, how to fix the
bugs we found, and how to improve the code clarity, etc. For the specification
review, we wrote a separate informal document in English so that they could
review and confirm that no important properties are missed in the specification.



14 D. Park et al.

Trust base. The validity of the bytecode verification result assumes the cor-
rectness of the bytecode specification and the KEVM verifier. The algorithm
correctness proof is partially mechanized—only the proof of major lemmas are
mechanized in the K framework. The non-mechanized proofs are included in our
trust base. The Vyper compiler is not in the trust base.

Continuous verification. The verification target contract was a moving target.
Even if the contract code had been frozen before starting the formal verification
process, the code (both source code or bytecode) was updated in the middle of
the verification process, to fix bugs found during the process. Indeed, we found
several bugs in both the contract and the compiler, and each time we found a
bug, we had to re-verify the newly compiled bytecode that fixes the bug. Here
the problem was the overhead of re-verification. About 20% of the bytecode
verification effort was spent on re-verification.

The re-verification overhead could have been reduced by automatically ad-
justing formal specifications to updated bytecode, and/or making specifications
as independent of the specific details of the bytecode as possible. For exam-
ple, the current bytecode specification employs specific program-counter (PC)
values to refer to some specific positions of the bytecode, especially when speci-
fying loop invariants. Most of such PC values need to be updated whenever the
bytecode is modified. The re-verification overhead could have been reduced by
automatically updating such PC values, or even having the specification refer to
specific positions without using PC values. We leave this as future work.

6 Related Work

Static analysis and verification of smart contracts. There have been proposed
many static analysis tools [28,25,5,57,32,29,20,56,10] that are designed to auto-
matically detect a certain fixed set of bugs and vulnerabilities of smart contracts,
at the cost of generality and expressiveness. VerX [46] can verify past-time linear
temporal properties over multiple runs of smart contracts, but it requires the
target contracts to be effectively loop-free.

There also have been proposed verification tools that allow us to specify and
verify arbitrary functional correctness and/or security properties, such as [3,22]
based on the F* proof assistant [55], [1] based on Isabelle/HOL [33], the KEVM
verifier [45] based on the K framework [51], and VeriSol [27] based on Boogie [2].
The KEVM verifier has also been used to verify high-profile and challenging
smart contracts [50], including a multi-signature wallet called Gnosis Safe [21],
a decentralized token exchange called Uniswap [58], and a partial consensus
mechanism called Casper FFG [7].

Verification of systems software. There are many success stories of formal ver-
ification of systems software, from OS kernels [26,23,31], to file systems [8,52],
to cryptographic code [4]. While most of the verified systems code is either
synthesized from specifications, or implemented (or adjusted) to be verification-
friendly, there also exist efforts [12,9] to verify actual production code as is. Such



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 15

efforts are necessary especially when the production code is highly performance-
critical and/or existing development processes are hard to change to help pro-
duce verification-friendly code. The deposit contract we verified was given to us
at the code-frozen stage, and also performance-critical (especially in terms of the
gas cost), and thus we took and verified the given production-ready code as is,
without any modification except for fixing bugs.

7 Conclusion

We reported our end-to-end formal verification of the Ethereum 2.0 deposit con-
tract. We adopted the refinement-based verification approach to ensure the end-
to-end correctness of the contract while minimizing the verification effort. Specif-
ically, we first proved that the incremental Merkle tree algorithm is correctly im-
plemented in the contract, and then verified that the compiled bytecode is cor-
rectly generated from the source code. Although we found several critical issues
of the deposit contract during the formal verification process, some of which were
due to subtle hidden Vyper compiler bugs, all of the issues of the deposit con-
tract have been properly fixed in the latest version (v0.11.2) of the deposit con-
tract, compiled by the Vyper compiler version 1761-HOTFIX-v0.1.0-beta.13.
We conclude that the latest deposit contract bytecode will behave as expected—
as specified in the formal specification [48].

We note that this formal verification result is established without trusting
the Vyper compiler, which means that the formally verified bytecode is correct
even if the Vyper compiler is buggy [11]. Indeed, the Vyper compiler has been
improved enough to generate a correct bytecode from the deposit contract. In
other words, remaining Vyper compiler bugs, if any, have not been triggered
when generating the specific bytecode we formally verified.

https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy


16 D. Park et al.

References

1. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in isabelle/hol. In: Proceedings of the 7th ACM International
Conference on Certified Programs and Proofs. CPP 2018 (2018)

2. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: Formal Methods for Compo-
nents and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures (2005)

3. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: Short paper. In: Proceedings
of the 2016 ACM Workshop on Programming Languages and Analysis for Security.
PLAS 2016 (2016)

4. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S.T.V., Thompson, L.: Vale: Verifying high-performance crypto-
graphic assembly code. In: 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017 (2017)

5. Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz, R.,
Scholz, B.: Vandal: A scalable security analysis framework for smart contracts.
CoRR abs/1809.03981 (2018)

6. Buterin, V.: Progressive Merkle Tree. https://github.com/ethereum/research/
blob/master/beacon_chain_impl/progressive_merkle_tree.py

7. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR
abs/1710.09437 (2017)

8. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015 (2015)

9. Chudnov, A., Collins, N., Cook, B., Dodds, J., Huffman, B., MacCárthaigh, C.,
Magill, S., Mertens, E., Mullen, E., Tasiran, S., Tomb, A., Westbrook, E.: Con-
tinuous formal verification of amazon s2n. In: Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Confer-
ence, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II (2018)

10. ConsenSys Diligence: MythX. https://mythx.io/
11. ConsenSys Diligence: Vyper Security Review. https://diligence.consensys.

net/audits/2019/10/vyper/
12. Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:

Model checking boot code from AWS data centers. In: Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II (2018)

13. Ethereum Foundation: Contract ABI Specification. https://solidity.
readthedocs.io/en/v0.6.1/abi-spec.html

14. Ethereum Foundation: Ethereum 2.0 Deposit Contract. https://github.
com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/
validator_registration.vy

15. Ethereum Foundation: Ethereum 2.0 Specifications. https://github.com/
ethereum/eth2.0-specs

16. Ethereum Foundation: Ethereum Foundation Spring 2019 Update. https://blog.
ethereum.org/2019/05/21/ethereum-foundation-spring-2019-update/

https://github.com/ethereum/research/blob/master/beacon_chain_impl/progressive_merkle_tree.py
https://github.com/ethereum/research/blob/master/beacon_chain_impl/progressive_merkle_tree.py
https://mythx.io/
https://diligence.consensys.net/audits/2019/10/vyper/
https://diligence.consensys.net/audits/2019/10/vyper/
https://solidity.readthedocs.io/en/v0.6.1/abi-spec.html
https://solidity.readthedocs.io/en/v0.6.1/abi-spec.html
https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy
https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy
https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs
https://blog.ethereum.org/2019/05/21/ethereum-foundation-spring-2019-update/
https://blog.ethereum.org/2019/05/21/ethereum-foundation-spring-2019-update/


End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 17

17. Ethereum Foundation: Hardfork Meta: Istanbul. https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-1679.md

18. Ethereum Foundation: SimpleSerialize (SSZ). https://github.com/ethereum/
eth2.0-specs/tree/dev/ssz

19. Ethereum Foundation: Vyper. https://vyper.readthedocs.io
20. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart

contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain, WETSEB@ICSE 2019, Montreal, QC,
Canada, May 27, 2019 (2019)

21. Gnosis Ltd.: Gnosis Safe. https://safe.gnosis.io/
22. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-

rity analysis of ethereum smart contracts. In: Proceedings of the 7th International
Conference on Principles of Security and Trust. POST 2018 (2018)

23. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjöberg, V., Costanzo, D.: Certikos:
An extensible architecture for building certified concurrent OS kernels. In: 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016 (2016)

24. Hildenbrandt, E., Saxena, M., Zhu, X., Rodrigues, N., Daian, P., Guth, D., Moore,
B., Zhang, Y., Park, D., Ştefănescu, A., Roşu, G.: Kevm: A complete semantics of
the ethereum virtual machine. In: Proceedings of the 31st IEEE Computer Security
Foundations Symposium. CSF 2018 (2018)

25. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: Proceedings of the 25th Annual Network and Distributed System
Security Symposium. NDSS 2018 (2018)

26. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: sel4: formal verification of an OS kernel. In: Proceedings of the 22nd
ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky,
Montana, USA, October 11-14, 2009 (2009)

27. Lahiri, S.K., Chen, S., Wang, Y., Dillig, I.: Formal specification and verification of
smart contracts for azure blockchain. CoRR abs/1812.08829 (2018)

28. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS 2016 (2016)

29. Marescotti, M., Blicha, M., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Comput-
ing exact worst-case gas consumption for smart contracts. In: Leveraging Appli-
cations of Formal Methods, Verification and Validation. Industrial Practice - 8th
International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part IV (2018)

30. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology. CRYPTO ’87 (1988)

31. Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt, J., Torlak, E.,
Wang, X.: Hyperkernel: Push-button verification of an OS kernel. In: Proceedings
of the 26th Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017 (2017)

32. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA, December
03-07, 2018 (2018)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1679.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1679.md
https://github.com/ethereum/eth2.0-specs/tree/dev/ssz
https://github.com/ethereum/eth2.0-specs/tree/dev/ssz
https://vyper.readthedocs.io
https://safe.gnosis.io/


18 D. Park et al.

33. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

34. NIST: Perfect Binary Tree. https://xlinux.nist.gov/dads/HTML/
perfectBinaryTree.html

35. Park, D.: Ethereum 2.0 Deposit Contract Issue 1341: Non ABI-standard return
value of get_deposit_count of deposit contract. https://github.com/ethereum/
eth2.0-specs/issues/1341

36. Park, D.: Ethereum 2.0 Deposit Contract Issue 1357: Ill-formed calldata to de-
posit contract can add invalid deposit data. https://github.com/ethereum/eth2.
0-specs/issues/1357

37. Park, D.: Ethereum 2.0 Deposit Contract Issue 26: Maximum deposit count. https:
//github.com/ethereum/deposit_contract/issues/26

38. Park, D.: Ethereum 2.0 Deposit Contract Issue 27: Redundant assignment in init().
https://github.com/ethereum/deposit_contract/issues/27

39. Park, D.: Ethereum 2.0 Deposit Contract Issue 28: Loop fusion optimization.
https://github.com/ethereum/deposit_contract/issues/28

40. Park, D.: Ethereum 2.0 Deposit Contract Issue 38: A refactoring suggestion for the
loop of deposit(). https://github.com/ethereum/deposit_contract/issues/38

41. Park, D.: Vyper Issue 1563: Insufficient zero-padding bug for functions returning
byte arrays of size < 16. https://github.com/vyperlang/vyper/issues/1563

42. Park, D.: Vyper Issue 1599: Off-by-one error in zero_pad(). https://github.com/
vyperlang/vyper/issues/1599

43. Park, D.: Vyper Issue 1610: Non-semantics-preserving refactoring for zero_pad().
https://github.com/vyperlang/vyper/issues/1610

44. Park, D.: Vyper Issue 1761: Potentially insufficient gas stipend for precompiled
contract calls. https://github.com/vyperlang/vyper/issues/1761

45. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A Formal Verification Tool
for Ethereum VM Bytecode. In: Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE 2018 (2018)

46. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.:
VerX: Safety Verification of Smart Contracts. https://files.sri.inf.ethz.ch/
website/papers/sp20-verx.pdf

47. Podelski, A., Rybalchenko, A.: Transition invariants. In: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science. LICS 2004 (2004)

48. Runtime Verification, Inc.: Bytecode Behavior Specification of Ethereum
2.0 Deposit Contract. https://github.com/runtimeverification/
verified-smart-contracts/blob/master/deposit/bytecode-verification/
deposit-spec.ini.md

49. Runtime Verification, Inc.: Formal Verification of Ethereum 2.0 Deposit Con-
tract. https://github.com/runtimeverification/verified-smart-contracts/
tree/master/deposit

50. Runtime Verification, Inc.: Formally Verified Smart Contracts. https://github.
com/runtimeverification/verified-smart-contracts

51. Serbanuta, T., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Rosu, G.: The K
primer (version 3.3). Electr. Notes Theor. Comput. Sci. 304, 57–80 (2014)

52. Sigurbjarnarson, H., Bornholt, J., Torlak, E., Wang, X.: Push-button verification
of file systems via crash refinement. In: 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016 (2016)

https://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html
https://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html
https://github.com/ethereum/eth2.0-specs/issues/1341
https://github.com/ethereum/eth2.0-specs/issues/1341
https://github.com/ethereum/eth2.0-specs/issues/1357
https://github.com/ethereum/eth2.0-specs/issues/1357
https://github.com/ethereum/deposit_contract/issues/26
https://github.com/ethereum/deposit_contract/issues/26
https://github.com/ethereum/deposit_contract/issues/27
https://github.com/ethereum/deposit_contract/issues/28
https://github.com/ethereum/deposit_contract/issues/38
https://github.com/vyperlang/vyper/issues/1563
https://github.com/vyperlang/vyper/issues/1599
https://github.com/vyperlang/vyper/issues/1599
https://github.com/vyperlang/vyper/issues/1610
https://github.com/vyperlang/vyper/issues/1761
https://files.sri.inf.ethz.ch/website/papers/sp20-verx.pdf
https://files.sri.inf.ethz.ch/website/papers/sp20-verx.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/bytecode-verification/deposit-spec.ini.md
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/bytecode-verification/deposit-spec.ini.md
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/bytecode-verification/deposit-spec.ini.md
https://github.com/runtimeverification/verified-smart-contracts/tree/master/deposit
https://github.com/runtimeverification/verified-smart-contracts/tree/master/deposit
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/runtimeverification/verified-smart-contracts


End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 19

53. Stefanescu, A., Ciobaca, S., Mereuta, R., Moore, B.M., Serbanuta, T., Rosu, G.:
All-Path Reachability Logic. Logical Methods in Computer Science 15(2) (2019)

54. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-Based Program
Verifiers for All Languages. In: Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA 2016 (2016)

55. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016 (2016)

56. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: Static analysis of ethereum smart contracts. In: 1st
IEEE/ACM International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden, May 27 - June 3,
2018 (2018)

57. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: Practical security analysis of smart contracts. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018 (2018)

58. Uniswap: Uniswap Exchange Protocol. https://uniswap.io/
59. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger.

https://ethereum.github.io/yellowpaper/paper.pdf

https://uniswap.io/
https://ethereum.github.io/yellowpaper/paper.pdf


20 D. Park et al.

A Formalization and Correctness Proof of the
Incremental Merkle Tree Algorithm

We formalize the incremental Merkle tree algorithm [6], especially the one em-
ployed in the deposit contract [14], and prove its correctness w.r.t. the original
full-construction Merkle tree algorithm [30].

Notations. Let T be a perfect binary tree [34] (i.e., every node has exactly two
child nodes) of height h, and T (l, i) denote its node at level l and index i, where
the level of leaves is 0, and the index of the left-most node is 1. For example, if
h = 2, then T (2, 1) denotes the root whose children are T (1, 1) and T (1, 2), and
the leaves are denoted by T (0, 1), T (0, 2), T (0, 3), and T (0, 4), as follows:

T(0,1) T(0,2) T(0,3) T(0,4)

T(1,1) T(1,2)

T(2,1)

We write [[T (l, i)]] to denote the value of the node T (l, i), but we omit [[·]] when
the meaning is clear in the context.

Let us define two functions, ↑ and �, as follows:

↑ x = dx/2e (1)
� x = bx/2c (2)

Moreover, let us define ↑k x =↑ (↑k−1 x) for k ≥ 2, ↑1 x =↑ x, and ↑0 x = x. Let
{T (k, ↑k x)}hk=0 be a path {T (0, ↑0 x), T (1, ↑1 x), T (2, ↑2 x), · · · , T (h, ↑h x)}. We
write {T (k, ↑k x)}k if h is clear in the context. Let us define �k and {T (k, �k x)}k
similarly. For the presentation purpose, let T (l, 0) denote a dummy node which
has the parent T (l+1, 0) and the children T (l− 1, 0) and T (l− 1, 1). Note that,
however, these dummy nodes are only conceptual, allowing the aforementioned
paths to be well-defined, but not part of the tree at all.

In this notation, for a non-leaf, non-root node of index i, its left child index
is 2i − 1, its right child index is 2i, and its parent index is ↑ i. Also, note that
{T (k, ↑k m)}k is the path starting from the m-th leaf going all the way up to
the root.

First, we show that two paths {T (k, ↑k x)}k and {T (k, �k (x − 1))}k are
parallel with a “distance” of 1.

Lemma 1. For all x ≥ 1, and k ≥ 0, we have:

(↑k x)− 1 =�k (x− 1) (3)

Proof. Let us prove by induction on k. When k = 0, we have (↑0 x) − 1 =
x− 1 =�0 (x− 1). When k = 1, we have two cases:



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 21

– When x is odd, that is, x = 2y + 1 for some y ≥ 0:

(↑ x)− 1 = (↑ (2y + 1))− 1 =

⌈
2y + 1

2

⌉
− 1 = y =

⌊
2y

2

⌋
=� 2y =� (x− 1)

– When x is even, that is, x = 2y for some y ≥ 1:

(↑ x)−1 = (↑ 2y)−1 =

⌈
2y

2

⌉
−1 = y−1 =

⌊
2y − 1

2

⌋
=� (2y−1) =� (x−1)

Thus, we have:
(↑ x)− 1 =� (x− 1) (4)

Now, assume that (3) holds for some k = l ≥ 1. Then,

↑l+1 x =↑ (↑l x) (By the definition of ↑k)
=↑ ((�l (x− 1)) + 1) (By the assumption)

= (� (�l (x− 1))) + 1 (By Equation 4)

=�l+1 (x− 1) + 1 (By the definition of �k)

which concludes.

Now let us define the Merkle tree.

Definition 1. A perfect binary tree T of height h is a Merkle tree [30], if the
leaf node contains data, and the non-leaf node’s value is the hash of its children’s,
i.e.,

∀0 < l ≤ h. ∀0 < i ≤ 2h−l. T (l, i) = hash(T (l − 1, 2i− 1), T (l − 1, 2i)) (5)

Let Tm be a partial Merkle tree up-to m whose first m leaves contain data
and the other leaves are zero, i.e.,

Tm(0, i) = 0 for all m < i ≤ 2h (6)

Let Z be the zero Merkle tree whose leaves are all zero, i.e., Z(0, i) = 0 for
all 0 < i ≤ 2h. That is, Z = T0. Since all nodes at the same level have the same
value in Z, we write Z(l) to denote the value at the level l, i.e., Z(l) = Z(l, i)
for any 0 < i ≤ 2h−l.

Now we formulate the relationship between the partial Merkle trees. Given
two partial Merkle trees Tm−1 and Tm, if their leaves agree up-to m − 1, then
they only differ on the path {Tm(k, ↑k m)}k. This is formalized in Lemma 2.

Lemma 2. Let Tm be a partial Merkle tree up-to m > 0 of height h, and let
Tm−1 be another partial Merkle tree up-to m − 1 of the same height. Suppose
their leaves agree up to m−1, that is, Tm−1(0, i) = Tm(0, i) for all 1 ≤ i ≤ m−1.
Then, for all 0 ≤ l ≤ h, and 1 ≤ i ≤ 2h−l,

Tm−1(l, i) = Tm(l, i) when i 6=↑l m (7)



22 D. Park et al.

Proof. Let us prove by induction on l. When l = 0, we immediately have
Tm−1(0, i) = Tm(0, i) for any i 6= m by the premise and Equation 6. Now, assume
that (7) holds for some l = k. Then by Equation 5, we have Tm−1(k + 1, i) =
Tm(k + 1, i) for any i 6=↑ (↑k m) =↑k+1 m, which concludes.

Corollary 1 induces a linear-time incremental Merkle tree insertion algo-
rithm [6].

Corollary 1. Tm can be constructed from Tm−1 by computing only {Tm(k, ↑k
m)}k, the path from the new leaf, Tm(0,m), to the root.

Proof. By Lemma 2.

Let us formulate more properties of partial Merkle trees.

Lemma 3. Let Tm be a partial Merkle tree up-to m of height h, and Z be the
zero Merkle tree of the same height. Then, for all 0 ≤ l ≤ h, and 1 ≤ i ≤ 2h−l,

Tm(l, i) = Z(l) when i >↑l m (8)

Proof. Let us prove by induction on l. When l = 0, we immediately have
Tm(0, i) = Z(0) = 0 for any m < i ≤ 2h by Equation 6. Now, assume that
(8) holds for some 0 ≤ l = k < h. First, for any i ≥ (↑k+1 m) + 1, we have:

2i− 1 ≥ (2 ↑k+1 m) + 1 = 2

⌈↑k m
2

⌉
+ 1 ≥ 2

↑k m
2

+ 1 = (↑k m) + 1 (9)

Then, for any ↑k+1 m < i ≤ 2h−(k+1), we have:

Tm(k + 1, i) = hash(Tm(k, 2i− 1), Tm(k, 2i)) (By Equation 5)
= hash(Z(k), Z(k)) (By Equations 8 and 9)
= Z(k + 1) (By the definition of Z)

which concludes.

Lemma 4 induces a linear-space incremental Merkle tree insertion algorithm.

Lemma 4. A path {Tm(k, ↑k m)}k can be computed by using only two other
paths, {Tm−1(k, �k (m− 1)))}k and {Z(k)}k.

Proof. We will construct the path from the leaf, Tm(0,m), which is given. Sup-
pose we have constructed the path up to Tm(q, ↑q m) for some q > 0 by using
only two other sub-paths, {Tm−1(k, �k (m − 1))}q−1k=0 and {Z(k)}q−1k=0. Then, to
construct Tm(q + 1, ↑q+1 m), we need the sibling of Tm(q, ↑q m), where we have
two cases:

– Case (↑q m) is odd. Then, we need the right-sibling Tm(q, (↑q m)+1), which
is Z(q) by Lemma 3.



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 23

– Case (↑q m) is even. Then, we need the left-sibling Tm(q, (↑q m)− 1), which
is Tm(q, �q (m − 1)) by Lemma 1, which is in turn Tm−1(q, �q (m − 1)) by
Lemma 2.

By the mathematical induction on k, we conclude.

Lemma 5. Let h = TREE_HEIGHT. For any integer 0 ≤ m < 2h, the two paths
{Tm(k, �k m)}k and {Tm+1(k, �k (m+1))}k always converge, that is, there exists
unique 0 ≤ l ≤ h such that:

(�k m) + 1 =�k (m+ 1) is even for all 0 ≤ k < l (10)

(�k m) + 1 =�k (m+ 1) is odd for k = l (11)

�k m =�k (m+ 1) for all l < k ≤ h (12)

Tm(k, �k m) = Tm+1(k, �k (m+ 1)) for all l < k ≤ h (13)

Proof. Equation 12 follows from Equation 11, since for an odd integer x, � (x−
1) =� x. Also, Equation 13 follows from Lemma 2, since ↑k (m + 1) = (�k
m) + 1 6=�k m =�k (m + 1) by Lemma 1 and Equation 12. Thus, we only need
to prove the unique existence of l satisfying (10) and (11). The existence of l is
obvious since 1 ≤ m + 1 ≤ 2h, and one can find the smallest l satisfying (10)
and (11). Now, suppose there exist two different l1 < l2 satisfying (10) and (11).
Then, �l1 (m+ 1) is odd since l1 satisfies (11), while �l1 (m+ 1) is even since l2
satisfies (10), which is a contradiction, thus l is unique, and we conclude.

A.1 Pseudocode

Figure 2 shows the pseudocode of the incremental Merkle tree algorithm [6]
that is employed in the deposit contract [14]. It maintains a global counter
deposit_count to keep track of the number of deposits made, and two global
arrays zero_hashes and branch, which corresponds to Z (Definition 1) and a
certain part of {Tm(k, �k m)}k, where m denotes the value of deposit_count.
The init function is called once at the beginning to initialize zero_hashes
which is never updated later. The deposit function inserts a given new leaf
value in the tree by incrementing deposit_count and updating only a single
element of branch. The get_deposit_root function computes the root of the
current partial Merkle tree Tm.

Since the loops are bounded to the tree height and the size of global arrays
is equal to the tree height, it is clear that both time and space complexities of
the algorithm are linear.

A.2 Correctness Proof

Now we prove the correctness of the incremental Merkle tree algorithm shown
in Figure 2.



24 D. Park et al.

branch

zero_hashes

updated

untouched

T4(0, "0 4)

T4(1, "1 4)

T4(2, "2 4)

T4(3, "3 4)

Z(0) Z(0) Z(0) Z(0)

Z(1)

Z(2)

Z(1)

T4(0, �0 3)

T4(1, �1 3)

Fig. 3. A partial Merkle tree T4 of height 3, illustrating the incremental Merkle tree
algorithm shown in Figure 2, where TREE_HEIGHT = 3. The bold-lined nodes correspond
to the branch array. The bold-dotted-lined nodes correspond to the zero_hashes array.
The get_deposit_root function computes the gray nodes by using only the bold-
lined nodes (i.e., branch) and the bold-dotted-lined nodes (i.e., zero_hashes), where
deposit_count = 4.

Theorem 1 (Correctness of Incremental Merkle Tree Algorithm). Sup-
pose that the init function is executed at the beginning, followed by a sequence of
deposit function calls, say deposit(v1), deposit(v2), · · · , and deposit(vm),
where m < 2TREE_HEIGHT. Then, the function call get_deposit_root() will return
the root of the partial Merkle tree Tm such that Tm(0, i) = vi for all 1 ≤ i ≤ m.

Proof. By Lemmas 6, 7, 8, and 9.

Note that the correctness theorem requires the condition m < 2h, where h
is the tree height, that is, the rightmost leaf must be kept empty, which means
that the maximum number of deposits that can be stored in the tree using this
incremental algorithm is 2h − 1 instead of 2h. See Section 5.1 for more details.

Lemma 6 (init). Once init is executed, zero_hashes denotes Z, that is,

zero_hashes[k] = Z(k) (14)

for 0 ≤ k < TREE_HEIGHT.

Proof. By the implementation of init and the definition of Z in Definition 1.

Lemma 7 (deposit). Suppose that, before executing deposit, we have:

deposit_count = m < 2TREE_HEIGHT − 1 (15)

branch[k] = Tm(k, �k m) if �k m is odd (16)



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 25

Then, after executing deposit(v), we have:

deposit_count′ = m+ 1 ≤ 2TREE_HEIGHT − 1 (17)

branch′[k] = Tm+1(k, �k (m+ 1)) if �k (m+ 1) is odd (18)

for any 0 ≤ k < TREE_HEIGHT, where:

Tm+1(0,m+ 1) = v (19)

Proof. Let h = TREE_HEIGHT. Equation 17 is obvious by the implementation
of deposit. Let us prove Equation 18. Let l be the unique integer described
in Lemma 5. We claim that deposit updates only branch[l] to be Tm+1(l, �l
(m+ 1)). Then, for all 0 ≤ k < l, �k (m+ 1) is not odd. For k = l, we conclude
by the aforementioned claim. For l < k ≤ h, we conclude by Equation 13 and
the fact that branch[k] is not modified (by the aforementioned claim).

Now, let us prove the aforementioned claim. Since branch is updated only
at line 23, we only need to prove i = l and value = Tm+1(l, �l (m+ 1)) at that
point. We claim the following loop invariant at line 17:

i = i < TREE_HEIGHT (20)

value = Tm+1(i, �i (m+ 1)) (21)

size =�i (m+ 1) (22)

�k (m+ 1) is even for any 0 ≤ k < i (23)

Note that i cannot reach TREE_HEIGHT, since (m + 1) < 2TREE_HEIGHT. Thus, by
the loop invariant, we have the following after the loop at line 23:

i = i < TREE_HEIGHT (24)

value = Tm+1(i, �i (m+ 1)) (25)

size =�i (m+ 1) is odd (26)

�k (m+ 1) is even for any 0 ≤ k < i (27)

Moreover, by Lemma 5, we have i = l, which suffices to conclude the aforemen-
tioned claim.

Now we only need to prove the loop invariant. First, at the beginning of the
first iteration, we have i = 0, value = v = Tm+1(0,m+ 1) by (19), and size =
(m+1), which satisfies the loop invariant. Now, assume that the invariant holds
at the beginning of the ith iteration that does not reach the break statement at
line 19 (i.e., size =�i (m + 1) is even). Then, i′ = i + 1, size′ =�i+1 (m + 1),
and:

Tm+1(i+ 1, �i+1 (m+ 1)) = hash(Tm+1(i, �i m), Tm+1(i, �i (m+ 1)))
(by Equation 10)

= hash(Tm(i, �i m), value)
(by Lemmas 1 & 2 and Equation 21)

= hash(branch[i], value) (by Equations 16 & 10)
= value′



26 D. Park et al.

Thus, the loop invariant holds at the beginning of the (i+1)th iteration as well,
and we conclude.

Lemma 8 (Contract Invariant). Let m = deposit_count. Then, once init
is executed, the following contract invariant holds. For all 0 ≤ k < TREE_HEIGHT,

1. zero_hashes[k] = Z(k)
2. branch[k] = Tm(k, �k m) if �k m is odd
3. deposit_count ≤ 2TREE_HEIGHT − 1

Proof. Let us prove each invariant item.

1. By Lemma 6, and the fact that zero_hashes is updated by only init.
2. By Lemma 7, and the fact that branch is updated by only deposit.
3. By the assertion of deposit (at line 13 of Figure 2), and the fact that

deposit_count is updated by only deposit.

Lemma 9 (get_deposit_root). The get_deposit_root function computes the
path {Tm(k, ↑k (m+1))}k and returns the root Tm(h, 1), given a Merkle tree Tm
of height h, that is, deposit_count = m < 2h and TREE_HEIGHT = h when
get_deposit_root is invoked.

Proof. We claim the following loop invariant at line 29, which suffices to conclude
the main claim.

h = k where 0 ≤ k ≤ h
size =�k m
root = Tm(k, ↑k (m+ 1))

Now let us prove the above loop invariant claim by the mathematical induction
on k. The base case (k = 0) is trivial, since �0 m = m, ↑0 (m + 1) = m + 1,
and Tm(0,m + 1) = 0 by Definition 1. Assume that the loop invariant holds
for some k = l. Let h′, size′, and root′ denote the values at the next iteration
k = l + 1. Obviously, we have h′ = l + 1 and size′ =�l+1 m. Also, we have
(�l m) + 1 =↑l (m+ 1) by Lemma 1. Now, we have two cases:

– Case size =�l m is odd. Then, ↑l (m+ 1) is even. Thus,

Tm(l + 1, ↑l+1 (m+ 1)) = hash(Tm(l, �l m), Tm(l, ↑l (m+ 1)))

= hash(branch[l], root) (by Lemma 8)
= root′

– Case size =�l m is even. Then, ↑l (m+ 1) is odd. Thus,

Tm(l + 1, ↑l+1 (m+ 1)) = hash(Tm(l, ↑l (m+ 1)), Tm(l, (↑l (m+ 1)) + 1))

= hash(root, Z(l)) (by Lemma 3)
= hash(root, zero_hashes[l]) (by Lemma 8)
= root′

Thus, we have root′ = Tm(l + 1, ↑l+1 (m+ 1)), which concludes.



End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract 27

Mechanized Proofs. The loop invariant proofs of Lemma 7 and Lemma 9 are
mechanized in the K framework, which can be found at [49].


	End-to-End Formal Verification ofEthereum 2.0 Deposit Smart Contract

