
KJS: A Complete Formal
Semantics of JavaScript

Daejun Park Andrei Stefanescu Grigore Rosu
University of Illinois at Urbana-Champaign

June 16, 2015 @ PLDI’15

1

var _ = function f() {
!
 f();
 };
!
f();

Why semantics matters?

function f() {
!
 f();
}
!
f();

2

var _ = function f() {
!
 f();
 };
!
f();
!

Why semantics matters?

function f() {
!
 f();
}
!
f();

anonymous function expression function declaration

3-1

var _ = function f() {
!
 f();
 };
!
f();
!

Why semantics matters?

function f() {
!
 f();
}
!
f();

anonymous function expression function declaration

3-2

var _ = function f() {
!
 f();
 };
!
f();
!

Why semantics matters?

function f() {
!
 f();
}
!
f();

anonymous function expression function declaration

3-3

“use strict”;
var _ = function f() {
 f = 0;
!
 };
!

Why semantics matters?

“use strict”;
function f() {
 f = 0;
!
}
!

runtime
error

no error

4

“use strict”;
var _ = function f() {
 f = 0;
!
 };
!

Why semantics matters?

runtime error in Firefox, but
silently ignored in Chrome and Safari.

Chrome 38.0 and Safari 7.0.4 failed to conform to standard.
Fixed in Chrome 41.0 and Safari 8.0.6

5

Overview

6

Overview

K framework
(kframework.org)

7

Overview

KJS

K framework

8

Overview

KJS

K framework

Semantic coverage Program verification

9

K framework [Rosu and Serbanuta 2010]

Language semantics engineering framework (kframework.org)
!
Syntax. BNF annotated with evaluation strategy.
Semantics. (modular) small step operational semantics.
 i.e., a set of reduction rules over program states

S ⇒ S’

10

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

11-1

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

11-2

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

11-3

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

11-4

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

11-5

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

11-6

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

reduction

11-7

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

reduction

read-only

11-8

Semantic rules in K

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

348

Rule for object field lookup:

reduction

read-only irrelevant
omitted

…

11-9

Semantic-driven formal analysis

K

semantics
interpreter

program verifier

symbolic execution

for free

state space exploration. . .
. . .

12

KJS

K framework

13

KJS: outline

SemanticsIntermediate
RepresentationJavaScript

translation

KJS faithfully formalizes ECMAScript 5.1 standard.
informal

14-1

KJS: outline

SemanticsIntermediate
RepresentationJavaScript

translation

formalizemechanize

KJS faithfully formalizes ECMAScript 5.1 standard.
informal

14-2

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

ECMAScript 5.1 standard

15-1

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

ECMAScript 5.1 standard

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

15-2

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

systematic translation

ECMAScript 5.1 standard

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

15-3

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

each step of informal description
systematic translation

ECMAScript 5.1 standard

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

15-4

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

each step of informal description
systematic translation

ECMAScript 5.1 standard

formal pseudo-code statement

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

15-5

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

each step of informal description
systematic translation

ECMAScript 5.1 standard

formal pseudo-code statement

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

1-to-1 mapping

15-6

KJS: one-to-one mapping to standard

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

each step of informal description
systematic translation

ECMAScript 5.1 standard

formal pseudo-code statement

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

1-to-1 mapping

manual inspection

15-7

Completeness

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

Most complete semantics to date.

Tested against ECMAScript conformance test suite.

16-1

Completeness

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

Most complete semantics to date.

Tested against ECMAScript conformance test suite.

16-2

Completeness

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

Most complete semantics to date.

Tested against ECMAScript conformance test suite.

16-3

Took only four months by a first year PhD student.

 # semantic rules: 1,370

Development cost

17

Took only four months by a first year PhD student.

 # semantic rules: 1,370
Thanks to:
• K’s executability
• Systematic translation
• K’s modularity

Development cost

18

Took only four months by a first year PhD student.

 # semantic rules: 1,370

Development cost

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

19-1

Took only four months by a first year PhD student.

 # semantic rules: 1,370

Development cost

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

foundation

19-2

Took only four months by a first year PhD student.

 # semantic rules: 1,370

Development cost

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

language constructsfoundation

19-3

Took only four months by a first year PhD student.

 # semantic rules: 1,370

Development cost

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

[Politz et al. 2012]5 2,470 345 87.7%
[Bodin et al. 2014] 1,796 986 64.6%
JavaScript Engines Passed Failed % passed

Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%
Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

tics [Politz et al. 2012; Bodin et al. 2014], we also tested our seman-
tics against the official ECMAScript 5.1 language conformance test
suite, test262 [Ecma TC39 2014c]. The test262 consists of 11,578
test programs which are classified according to each of the chapters
of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have
716 tests for parsing; Chapters 8-14 have 2,782 tests for the lan-
guage core; and Chapter 15 and Annex B have 8,080 tests for stan-
dard libraries. Like previous JavaScript semantics efforts, to keep
the project focused and manageable we targeted only the 2,782 tests
corresponding to the core language. As explained in Section 3.4, we
have also defined some essential standard built-in objects and inter-
nal methods, so that the remaining methods can be implemented in
plain JavaScript. However, providing JavaScript code for the hun-
dreds of standard library methods is not in the scope of our current
study.

Table 1 shows that KJS is the most complete JavaScript seman-
tics to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari and Firefox. While the 2,782 tests are supposed to
test the language core, several tests use library calls, e.g. to trigono-
metric functions. To test such programs modulo the unsupported
libraries, we used a feature of K allowing to employ an external li-
brary implementation; specifically, we used the Node.js implemen-
tation of Math.sin, Number.toFixed, and Number.toString.4
Further, to overcome some current parsing limitations of K (ac-
knowledged by K’s developers and scheduled for fixing), we
pre-process the input JavaScript program using the SAFE frame-
work [Lee et al. 2012] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for fast execution. With that, the execution time
is expected to drop from an hour to minutes.

4.2 Development Cost
The development of KJS took a first year PhD student, with no prior
knowledge of JavaScript or of the K semantic framework, only four
months. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without

4 Only a dozen of tests depend on this, which is not a significant number.
5 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the pro-
gramming language semantics field has matured enough that lan-
guage designers should consider defining a complete formal seman-
tics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language
takes too long to be worthwhile. To bring more evidence in this
direction, we measured and logged the KJS development progress
rigorously. Figure 7 shows how many tests passed each day dur-
ing the project timeframe. In the first month we developed the
semantic foundation such as syntax, program configuration, proto-
type chains, environments, and execution contexts. In the next two
months, we defined individual language constructs. Due to the mod-
ularity of the employed framework, during this period the number
of passed tests linearly increases as each language construct is de-
fined. In the last month we finished our semantics with addressing
specific details and corner cases revealed by failed tests, until all of
them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning that
they were driven by our own interests and that they are by no means
exhaustive. The message we want to convey is that a formal seman-
tics can be useful well beyond just giving a reference model/imple-
mentation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines
in different web browsers. Detecting unspecified behaviors in
JavaScript programs is not trivial. Simply running the program
in different JavaScript engines is not sufficient: even if they all
agree on some unspecified behavior now, this may change in future
releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the
output x:1;. Besides unspecified behaviors, we also need to check
for non-deterministic behaviors; e.g., to ensure that the iteration

language constructsfoundation finalize

19-4

KJS

K framework

Semantic coverage Program verification

20

Semantic coverage measurement

From Sep 23 2014 ECMA Committee Meeting Minutes:
(https://esdiscuss.org/notes/2014-09-23)
!
Discussion of test262's (lack of) coverage.
!
Brian Terlson: We didn't have coverage in test262 of ...
…
(Discussion of running test262 tests against implementations, especially given
their optimizations.)
…
Brendan Eich: this was the "depress the room" agenda item
…
!
Conclusion/Resolution
• It's impossible to test ECMAScript
• Testing is hard

Prior attempts found it difficult to measure semantic coverage:

creator of
JavaScript

test262
maintainer

21

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

22-1

Semantic coverage measurement

The expression “++ Expression” is evaluated as follows:

1. Let expr be the result of evaluating Expression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. Let newValue be the result of adding the value 1 to oldValue.

4. Call PutValue(expr, newValue).

5. Return newValue.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [?] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [? ?] for more
details. In K, a language syntax is given using conventional Backus-
Naur Form (BNF). A language semantics is given as a transition
system, specifically a set of reduction rules over configurations. A
configuration is an algebraic representation of the program code
and state. Intuitively, it is a tuple whose elements (called cells)
are labeled and possibly nested. Each cell represents a semantic
component such as stores, environments, and threads that are used
in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program
fragment, while the original program is flattened into a sequence of
computations. A rule describes a one-step transition relation between
configurations, thus giving semantics to language constructs. Rules
are modular; they mention only relevant cells that are needed in
each rule. For example, a property lookup semantics can be defined
as the following K rule:

*
O [P]

V
···
+

k hhOi oid h··· P 7! V ···i properties ···i obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the
property name P. This rule resolves the property lookup O[P] to the

property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [?], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

ECMAScript 5.1 standard

 rule ++ Expression =>	
 Let $expr = @GetReference(Expression);	
 Let $oldValue = ToNumber(GetValue($expr));	
 Let $newValue = @Addition($oldValue,1);	
 Do PutValue($expr,$newValue);	
 Return $newValue;

KJS

How many semantic rules are covered by 2,782 core tests?

22-2

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

23-1

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # ⇥ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⌦ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # ⇥ # # ⇥ #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⌦ ⌦ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # ⇥ # ⇥ # ⇥
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⌦ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⌦ ⌦ # # ⇥
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⌦ ⌦ # # ⇥
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ⇥: Failed ⌦: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: [Politz et al. 2012] Bo: [Bodin et al. 2014] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

function mkSend(rawSend) {
var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };
function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);
else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

Figure 8. Secure Message Sending

method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [Samuel 2009b], we con-
struct a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ^ (V = true _
V is a non-empty string _ V is a non-zero number _ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based se-
mantics, at no additional cost (with no need to define another seman-
tics) [Rosu and Stefanescu 2012]. Program properties are specified
as reachability rules. K uses a sound and relatively complete proof
system for deriving such rules from the operational semantics rules,
which amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

KJS: A Complete Formal Semantics of JavaScript 8 2015/4/15

17 rules never covered:

23-2

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # ⇥ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⌦ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # ⇥ # # ⇥ #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⌦ ⌦ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # ⇥ # ⇥ # ⇥
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⌦ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⌦ ⌦ # # ⇥
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⌦ ⌦ # # ⇥
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ⇥: Failed ⌦: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: [Politz et al. 2012] Bo: [Bodin et al. 2014] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

function mkSend(rawSend) {
var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };
function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);
else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

Figure 8. Secure Message Sending

method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [Samuel 2009b], we con-
struct a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ^ (V = true _
V is a non-empty string _ V is a non-zero number _ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based se-
mantics, at no additional cost (with no need to define another seman-
tics) [Rosu and Stefanescu 2012]. Program properties are specified
as reachability rules. K uses a sound and relatively complete proof
system for deriving such rules from the operational semantics rules,
which amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

KJS: A Complete Formal Semantics of JavaScript 8 2015/4/15

17 rules never covered:
• 6: shown infeasible → inconsistency of standard

23-3

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # ⇥ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⌦ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # ⇥ # # ⇥ #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⌦ ⌦ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # ⇥ # ⇥ # ⇥
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⌦ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⌦ ⌦ # # ⇥
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⌦ ⌦ # # ⇥
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ⇥: Failed ⌦: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: [Politz et al. 2012] Bo: [Bodin et al. 2014] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

function mkSend(rawSend) {
var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };
function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);
else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

Figure 8. Secure Message Sending

method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [Samuel 2009b], we con-
struct a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ^ (V = true _
V is a non-empty string _ V is a non-zero number _ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based se-
mantics, at no additional cost (with no need to define another seman-
tics) [Rosu and Stefanescu 2012]. Program properties are specified
as reachability rules. K uses a sound and relatively complete proof
system for deriving such rules from the operational semantics rules,
which amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

KJS: A Complete Formal Semantics of JavaScript 8 2015/4/15

17 rules never covered:
• 6: shown infeasible → inconsistency of standard
•11: wrote new tests → found bugs in JS engines

23-4

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # ⇥ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⌦ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # ⇥ # # ⇥ #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⌦ ⌦ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # ⇥ # ⇥ # ⇥
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⌦ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⌦ ⌦ # # ⇥
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⌦ ⌦ # # ⇥
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ⇥: Failed ⌦: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: [Politz et al. 2012] Bo: [Bodin et al. 2014] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

function mkSend(rawSend) {
var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };
function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);
else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

Figure 8. Secure Message Sending

method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [Samuel 2009b], we con-
struct a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ^ (V = true _
V is a non-empty string _ V is a non-zero number _ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based se-
mantics, at no additional cost (with no need to define another seman-
tics) [Rosu and Stefanescu 2012]. Program properties are specified
as reachability rules. K uses a sound and relatively complete proof
system for deriving such rules from the operational semantics rules,
which amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

KJS: A Complete Formal Semantics of JavaScript 8 2015/4/15

motivating
example

17 rules never covered:
• 6: shown infeasible → inconsistency of standard
•11: wrote new tests → found bugs in JS engines

23-5

Semantic coverage measurement
How many semantic rules are covered by 2,782 core tests?

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # ⇥ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⌦ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # ⇥ # # ⇥ #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⌦ ⌦ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # ⇥ # ⇥ # ⇥
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⌦ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⌦ ⌦ # # ⇥
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⌦ ⌦ # # ⇥
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ⇥: Failed ⌦: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: [Politz et al. 2012] Bo: [Bodin et al. 2014] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

function mkSend(rawSend) {
var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };
function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);
else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

Figure 8. Secure Message Sending

method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [Samuel 2009b], we con-
struct a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ^ (V = true _
V is a non-empty string _ V is a non-zero number _ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based se-
mantics, at no additional cost (with no need to define another seman-
tics) [Rosu and Stefanescu 2012]. Program properties are specified
as reachability rules. K uses a sound and relatively complete proof
system for deriving such rules from the operational semantics rules,
which amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

KJS: A Complete Formal Semantics of JavaScript 8 2015/4/15

motivating
example

17 rules never covered:
• 6: shown infeasible → inconsistency of standard
•11: wrote new tests → found bugs in JS engines

semantics is useful

23-6

Program verification
Matching/Reachability Logic Verifier [Rosu and Stefanescu 2012, 2013, 2014]

KJS

verificationK verifier

JS program

specification

24

Program verification
Matching/Reachability Logic Verifier [Rosu and Stefanescu 2012, 2013, 2014]

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # ⇥ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⌦ ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⌦ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # ⇥ # # ⇥ #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⌦ ⌦ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # ⇥ # ⇥ # ⇥
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⌦ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⌦ ⌦ # # ⇥
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⌦ ⌦ # # ⇥
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ⇥: Failed ⌦: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: Politz et al. [37] Bo: Bodin et al. [3] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

5.3 Symbolic Execution
Here and in Section 5.4 we illustrate how to derive JavaScript
program reasoning tools from generic tools offered by the employed
semantic framework. K allows for terms it reduces to be symbolic,
that is, to contain mathematical variables and constraints on them.
As semantic rules are applied, constraints are accumulated and
solved using Z3 [9] (which is incorporated in K). In this section
we show how this capability can be used to find a known security
vulnerability, and in the next section how it can be lifted into a
fully-fledged JavaScript program verifier.

Consider the program in Figure 8, introduced by Fournet et al.
[17], which contains a secure message sending function. The send
method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [42], we construct
a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ^ (V = true _
V is a non-empty string _ V is a non-zero number _ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based
semantics, at no additional cost (with no need to define another
semantics) [40]. Program properties are specified as reachability
rules. K uses a sound and relatively complete proof system for
deriving such rules from the operational semantics rules, which
amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

353

25

Security vulnerability detection
Found a known security vulnerability [Fournet et al. 2013]

attack model

‘search’-mode
execution

26-1

Security vulnerability detection
Found a known security vulnerability [Fournet et al. 2013]

attack model

‘search’-mode
execution

global object
poisoning attack

26-2

Security vulnerability detection
Found a known security vulnerability [Fournet et al. 2013]

attack model

‘search’-mode
execution

global object
poisoning attack

secure message
sending program

26-3

Security vulnerability detection
Found a known security vulnerability [Fournet et al. 2013]

attack model

‘search’-mode
execution

global object
poisoning attack

secure message
sending program

attack scenario

26-4

Semantic-driven formal analysis

Applications Dev. time

semantic coverage measurement 1.5 weeks

program verification 2 weeks

security vulnerability detection 1 week

27

Summary

• Most complete JavaScript semantics to date.

• Semantic coverage measurement
• Found bugs in Chrome, Firefox, and Safari

• Symbolically executable
• Verified JavaScript programs
• Found known security vulnerability

github.com/kframework/javascript-semantics �
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
�
��
�
�

��
������ �

�
�
�

28

