End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract

<u>Daejun Park</u> Yi Zhang Grigore Rosu

July 22, 2020 @ CAV'20

Ethereum 2.0

- A new sharded Proof-of-Stake protocol
- · Lives in parallel with the existing Proof-of-Work chain at its early stage
 - The Proof-of-Work chain is driven by miners
 - The Proof-of-Stake chain is driven by validators
- To be a validator, one needs to deposit a certain amount of Ether, as a "stake", by sending a transaction to the "deposit contract"

deposit ledger

	Name	Amount
	Alice	10 ETH
2^{32}	Bob	20 ETH
	=	_
~4 billion	-	-

Formal verification of deposit contract

- End-to-end verification via refinement-based approach
 - Formalize and verify the incremental Merkle tree algorithm
 - Verify the contract bytecode faithfully implements the algorithm
 - No need to trust compiler
- · This separation of concerns helped to reduce verification effort

Verification effort

Correctness proof (over formal model)	2 person-weeks
Refinement proof (over bytecode)	5 person-weeks
Total	7 person-weeks

Source code	~100 LOCs
Bytecode	~3,000 instructions
Mechanized proofs	~1,000 LOCs

Findings

Critical bug in the algorithm implementation

- Several bugs in the compiled bytecode
 - Mostly due to compiler bugs

Verification effort

Correctness proof (over formal model)	2 person-weeks
Refinement proof (over bytecode)	5 person-weeks
Total	7 person-weeks

Source code	~ 100 LOCs
Bytecode	~3,000 instructions
Mechanized proofs	~1,000 LOCs

Formal verification of deposit contract

- End-to-end verification via refinement-based approach
 - Formalize and verify the incremental Merkle tree algorithm
 - Verify the contract bytecode faithfully implements the algorithm
 - No need to trust compiler
- This separation of concerns helped to reduce verification effort

Findings

The buggy implementation returns the root hash of empty Merkle tree #(0,0) #(1,2) #(3,4) #(1,2) #(0,0) A new validator joins #(B,20) #(C,30) #(A,10) #(B,20) (#(C,30)) #(D,40) #(A,10)

Fill the last leaf

Several bugs in the compiled bytecode

Critical bug in the algorithm implementation

Mostly due to compiler bugs

Formal verification of deposit contract

- End-to-end verification via refinement-based approach
 - Formalize and verify the incremental Merkle tree algorithm
 - Verify the contract bytecode faithfully implements the algorithm
 - No need to trust compiler
- This separation of concerns helped to reduce verification effort

https://github.com/runtimeverification/deposit-contract-verification

Critical bug in the algorithm implementation

- Several bugs in the compiled bytecode
 - Mostly due to compiler bugs