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Ethereum 2.0

* A new sharded Proof-of-Stake protocol

* Lives in parallel with the existing Proof-of-Work chain at its early stage
* The Proof-of-Work chain is driven by miners
* The Proof-of-Stake chain is driven by validators

* To be a validator, one needs to deposit a certain amount of Ether, as
a “stake”, by sending a transaction to the “deposit contract”
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Formal verification of deposit contract

* End-to-end verification via refinement-based approach
* Formalize and verify the incremental Merkle tree algorithm
* Verify the contract bytecode faithfully implements the algorithm
* No need to trust compiler

* This separation of concerns helped to reduce verification effort



Verification effort

Correctness proof

2 person-weeks Source code 100 LOCs
(over formal model)

Refinement proof
(over bytecode)

5 person-weeks Bytecode ~3,000 instructions

Total /7 person-weeks Mechanized proofs ~ 1,000 LOCs




Findings

* Critical bug in the algorithm implementation

The buggy implementation
returns the root hash of
empty Merkle tree

#(5,6)

5

5 é
@ @ A new validator joins @
] 2 3 4
#(B,20) #(B,20) #(D,40)

F||| the last leaf

» Several bugs in the compiled bytecode

* Mostly due to compiler bugs
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