End-to-End Formal Verification of
Ethereum 2.0 Deposit Smart Contract

Daejun Park Yi Zhang Grigore Rosu

July 22, 2020 @ CAV’20

P fiention T ILLINOIS

Ethereum 2.0

* A new sharded Proof-of-Stake protocol

* Lives in parallel with the existing Proof-of-Work chain at its early stage
* The Proof-of-Work chain is driven by miners
* The Proof-of-Stake chain is driven by validators

* To be a validator, one needs to deposit a certain amount of Ether, as
a “stake”, by sending a transaction to the “deposit contract”

Ethereum 2.0 deposit contract

deposit ledger

Alice 10 ETH
Bob 20 ETH

232

~ 4 billion

Ethereum 2.0 deposit contract

deposit ledger

232

~ 4 billion

Alice
Bob

10 ETH
20 ETH

on-chain

O

Ethereum 2.0 deposit contract

232

~ 4 billion

deposit ledger

Alice
Bob

10 ETH
20 ETH

Merkle tree

on-chain

Ethereum 2.0 deposit contract

deposit ledger

232

~4 billion

Alice
Bob

10 ETH
20 ETH

Alice
Bob
Charlie

Charlie joins

10 ETH
20 ETH
30 ETH

Merkle tree on-chain

A

Ethereum 2.0 deposit contract

deposit ledger

232

~4 billion

Alice
Bob

10 ETH
20 ETH

Alice
Bob
Charlie

Charlie joins

10 ETH
20 ETH
30 ETH

Merkle tree on-chain

A

The root hash is re-computed
in O(log N) time and space

7' \
\
o

Formal verification of deposit contract

* End-to-end verification via refinement-based approach
* Formalize and verify the incremental Merkle tree algorithm
* Verify the contract bytecode faithfully implements the algorithm
* No need to trust compiler

* This separation of concerns helped to reduce verification effort

Verification effort

Correctness proof

2 person-weeks Source code 100 LOCs
(over formal model)

Refinement proof
(over bytecode)

5 person-weeks Bytecode ~3,000 instructions

Total /7 person-weeks Mechanized proofs ~ 1,000 LOCs

Findings

* Critical bug in the algorithm implementation

The buggy implementation
returns the root hash of
empty Merkle tree

#(5,6)

5

5 é
@ @ A new validator joins @
] 2 3 4
#(B,20) #(B,20) #(D,40)

F||| the last leaf

» Several bugs in the compiled bytecode

* Mostly due to compiler bugs

Ethereum 2.0 deposit contract

Merkle tree

deposit ledger

Alice 10 ETH
232 Bob 20 ETH
~ 4 billion
\ Charlie joins
Alice 10 ETH
Bob 20 ETH

Charlie 30 ETH

Verification effort

Correctness proof

(over formal model) 2 person-weeks

Refinement proof
(over bytecode)

5 person-weeks

Total 7 person-weeks

on-chain

A

—
The root hash is re-computed
in O(log N) time and space

Source code

Bytecode

Mechanized proofs

|

~100 LOCs

~3,000 instructions

71,000 LOCs

Formal verification of deposit contract

* End-to-end verification via refinement-based approach
* Formalize and verify the incremental Merkle tree algorithm
* Verify the contract bytecode faithfully implements the algorithm
* No need to trust compiler

* This separation of concerns helped to reduce verification effort

Findings

* Critical bug in the algorithm implementation
The buggy implementation

returns the root hash of
empty Merkle tree

Fill the last leaf

» Several bugs in the compiled bytecode

* Mostly due to compiler bugs

Ethereum 2.0 deposit contract Formal verification of deposit contract

deposit ledger Merkle tree on-chain
Alice 10 ETH
532 Bob 20 ETH * End-to-end verification via refinement-based approach
~4 billion * Formalize and verify the incremental Merkle tree algorithm
—
\ Charlie joins The root hash is re-computeci| * Verify the contract bytecode faithfully implements the algorithm
in O(log N) time and space
| * No need to trust compiler
Alice 10 ETH
Bob 20 ETH * This separation of concerns helped to reduce verification effort

Charlie 30 ETH

hitps://github.com/runtimeverification/deposit-contract-verification

* Critical bug in the algorithm implementation
The buggy implementation

returns the root hash of
empty Merkle tree

Correctness proof

2 person-weeks Source code ~100 LOCs
(over formal model)

Refinement proof
(over bytecode)

5 person-weeks Bytecode ~3,000 instructions

Total 7 person-weeks Mechanized proofs ~1,000 LOCs

Fill the last leaf

» Several bugs in the compiled bytecode

* Mostly due to compiler bugs

