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Smart contracts
• Programs that run on blockchain 

• Usually written in a high-level language 

• Solidity (JavaScript-like), Vyper (Python-like), … 

• Compiled down to VM bytecode 

• EVM (Ethereum VM), IELE (LLVM-like VM), … 

• Runs on VM of blockchain nodes
our target



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] =+ value; 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] =+ value; 
        balances[from] -= value; 
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        return true; 
    } else { 
        return false; 
    } 
}

‘=+’  vs  ‘+=’

* ETHNews.com, “Ether.Camp’s HKG Token Has A Bug And Needs To Be Reissued”



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] = (+value); 
        balances[from] -= value; 
!
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    } 
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* ETHNews.com, “Ether.Camp’s HKG Token Has A Bug And Needs To Be Reissued”



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] = value; 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}

* ETHNews.com, “Ether.Camp’s HKG Token Has A Bug And Needs To Be Reissued”



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] += value; 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] += value; 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}

arithmetic overflow



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] = SafeMath.add(balances[to], value); 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}

will throw if overflow



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
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        balances[to] = SafeMath.add(balances[to], value); 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
        balances[to] = SafeMath.add(balances[to], value); 
        balances[from] -= value; 
!
        return true; 
    } else { 
        return false; 
    } 
}

self-transfer may fail



Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
!
        balances[from] -= value; 
        balances[to] = SafeMath.add(balances[to], value); 
        return true; 
    } else { 
        return false; 
    } 
}

more robust



Why bytecode?

interface Token { 
  function transfer() returns (bool); 
} 
!
contract Wallet { 
  function transfer(address token) { 
    return Token(token).transfer(); 
  } 
}

contract GoodToken { 
  function transfer() { 
    return true; 
  } 
}

address: 0x01

contract BadToken { 
  function transfer() { } 
}

address: 0x02
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Why bytecode?

interface Token { 
  function transfer() returns (bool); 
} 
!
contract Wallet { 
  function transfer(address token) { 
    return Token(token).transfer(); 
  } 
}

contract GoodToken { 
  function transfer() { 
    return true; 
  } 
}

address: 0x01

contract BadToken { 
  function transfer() { } 
}

address: 0x02

if token = 0x02

* Lukas Cremer, “Missing return value bug — At least 130 tokens affected”

• Return true in Solidity 0.4.21 or earlier 

• Revert in Solidity 0.4.22 or later     (latest: 0.4.25)



K EVM Verifier

Smart contract 
Bytecode

Specification 
(+ loop invariants)

!
!
!
!
!
!

K EVM Verifier 
!
!
!
!
!



K EVM Verifier

Deductive 
Verifier 

[OOPSLA’16] 

EVM 
Semantics 
[CSF’18]

Abstractions 
Lemmas

Smart contract 
Bytecode

Specification 
(+ loop invariants)

K EVM Verifier



Specification example
[transfer-success] 
!
callData: 
  #abiCallData(“transfer", 
      #address(FROM), #address(TO), #uint256(VALUE)) 
!
storage: 
  #(BALANCES[FROM]) ⟼ (BAL_FROM ⟹ BAL_FROM - VALUE) 
  #(BALANCES[TO]  ) ⟼ (BAL_TO   ⟹ BAL_TO   + VALUE) 
!
requires: 
  FROM ≠ TO 
  VALUE ≤ BAL_FROM 
  BAL_TO + VALUE < (2 ^ 256) 
!
output: 
  _ ⟹ #asByteArray(1, 32) 
!
statusCode: 
  _ ⟹ EVMC_SUCCESS

true

true

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
!
        balances[from] -= value; 
        balances[to] = SafeMath.add(balances[to], value); 
        return true; 
    } else { 
        return false; 
    } 
}



Verified smart contracts*
• High-profile ERC20 token contracts 

• Ethereum Casper FFG (Hybrid PoW/PoS) 

• Gnosis MultiSigWallet (ongoing) 

• DappHub MakerDAO (by DappHub) 

• Uniswap (decentralized exchange) 

• Bihu (KEY token operation)

* https://github.com/runtimeverification/verified-smart-contracts



Challenges for EVM bytecode verification

• Byte-twiddling operations 

• Non-linear integer arithmetic 
(e.g., modulo reduction) 

• Arithmetic overflow detection 

• Gas limit 

• Variable gas cost depending on contexts 

• Hash collision



Byte-twiddling operations

for EVM. We optimized the verifier by introducing custom abstractions and lemmas specific to EVM that
expedite proof searching in the underlying theorem prover. We used the verifier to verify multiple ERC20 token
contracts against the EVM-level specification, and found deviations from our ERC20 specification introduced
by questionable design decisions by the tokens’ developers. We believe that the techniques we describe can be
also readily used for verifying other smart contracts.

Contributions Section 1.1 enumerates important, concrete challenges in EVM verification. The remainder of
our work describes our primary contributions:

• ERC20-K: For the first time, we comprehensively, falsifiably, and fully specify the high-level business
logic of ERC20, the most popular deployed token standard for smart contracts. ERC20-K enables high-
level reasoning about specification-level properties of ERC20, and helped reveal implementation pitfalls in
several non-trivial edge cases (e.g., self-transfer). ERC20-K can serve as a basis for reasoning about global
properties, such as conservation of token balances across transfers. ERC20-K is described in Section 2.

• EVM-level ERC20-K refinement: To demonstrate our approach, and to ensure a precise specification
of ERC20 that captures all possible execution behaviors, we then refine the ERC20-K specification to an
EVM-level specification with the help of the KEVM semantics presented in [?]. This ensures no security
vulnerabilities are introduced by EVM-specific quirks, and implicitly captures important non-interference
properties across interoperating smart contracts. We describe this refinement in Section 3.

• Scalable EVM verifier: To verify that implementations conform to our EVM-level refinement, we
leverage the first deductive verifier for EVM based on a complete formal semantics of EVM. Although we
obtain a correct-by-construction and sound out-of-box verifier from the work in [?], the verifier is relatively
slow and fails to prove many correct programs. We improve the scalability of this verifier by introducing
key abstractions and lemmas to expedite proof search. These modifications are described in Section 4.

• ERC20 implementation verification: For the first time, we completely verify high-profile, practically
deployed implementations of ERC20. We enumerate divergent behaviors across these tokens, illuminating
potential security vulnerabilities for any API clients assuming consistent behavior across ERC20 imple-
mentations. We present our evaluation in Section 5.

1.1 EVM Verification Challenges

Verifying smart contracts written in a high-level language that compiles to EVM, such as Solidity or Vyper,
appears straightforward. Compared to traditional verification targets, smart contracts appear relatively simple:
no unbounded computation is possible by design, and code size is generally small (usually less than 1K LOC).
Despite this, reasoning about the compiled EVM bytecode is challenging, especially due to internal byte-wise
operations that involve non-linear integer arithmetic which is not tractable (indeed, not decidable in general).
We now provide some examples of challenges in verifying EVM-level contracts.

Byte-twiddling Operations EVM contracts come with access to three storage types: local memory, local
stack, and global storage. Of these, only local memory is byte-addressable (represented as a byte-array), while
the others are word-addressable (represented as word-arrays consisting of 32-byte words). Thus, a 256-bit word
of integer needs to be split into 32 chunks of bytes to be stored in local memory, and these 32 chunks need
to be merged together when being loaded to either the stack or the global storage. These byte-wise splitting
and merging operations are implemented through non-linear integer arithmetic consisting of multiplication,
division, and modulo reduction. This conversion between EVM words and byte-arrays is formalized in the EVM
semantics [?]. Suppose x is a 256-bit integer. Let x[n] be the nth byte of x in its two’s complement representation,
where the index 0 refers to the LSB, defined as follows:

x[n]
def
= (x/256n) mod 256

3

Let x[i..j] be the byte-array consisting of x[i], x[i� 1], . . . , and x[j]. Let merge be a function that takes as an
argument a byte-array and returns the corresponding integer value under the two’s complement interpretation,
recursively defined as:

merge(x[i..j])
def
= merge(x[i..j + 1]) * 256 + x[j] when i > j

merge(x[i..i])
def
= x[i]

where * and + are multiplication and addition over words (modulo 2256). If the byte-wise operations are blindly
encoded as SMT theorems as shown in Figure 1, then Z3, a state-of-the-art SMT solver, times out attempting
to prove “x = merge(x[31..0])”. The formula in Figure 1 can be simplified to allow Z3 to efficiently terminate, for
example by omitting the modulo reduction for multiplication and addition in merge with additional reasoning
about the soundness of the omission. Despite these improvements, the merge operation still incurs severe
performance penalties as solving the large formula is required for every load/store into memory, an extremely
common operation.

Arithmetic Overflow Since EVM arithmetic instructions perform modular arithmetic (i.e., +, �, ⇤, / mod
2256), detecting arithmetic overflow is critical for preventing potential security holes due to unexpected overflow.
Otherwise, for example, increasing a user’s ERC20 balance could trigger an overflow, resulting in loss of the funds
as the balance wraps around to a lower-than-expected value. There is no standard EVM-level overflow check, so
overflow detection varies across compilers and libraries. For example, Vyper inserts the following runtime check
for an addition a + b over the 256-bit unsigned integers a and b:

b == 0 || a + b > a

where + represents addition modulo 2256. It seems straightforward to show that the above formula is equivalent
to a + b < 2256 (where + is the pure addition without modulo reduction), but it is no longer trivial once the
above is compiled down to EVM. The compiled EVM bytecode of the above formula can be encoded in SMT-LIB
format as follows:

(not (= (chop (+ (bool2int (= b 0))
(bool2int (> (chop (+ a b)) a)))) 0))

where (chop x) denotes (x mod 2256), and (bool2int x) is defined by (ite x 1 0). However, Z3 fails to prove
the above equivalent to a+ b < 2256, again timing out as shown in Figure 2.

Gas Limit Reasoning about gas consumption is important since an exception will be thrown when the gas
runs out of during the execution, and such an exception could result in tokens being frozen and getting stuck [?],
which is as dangerous as token being stolen or vaporized. Analyzing the precise gas consumption is not trivial
because it depends on both the program and its input state — the parameters and the storage. For example,
SSTORE, an instruction that stores a given value in a given location of the storage, consumes an amount of the
gas depending on both the new value to be stored and the existing value to be overwritten — a larger amount of
gas is charged for storing a value for the first time than updating the existing value, which incentivizes recycling
the storage entries that are not used any longer.

Hash Collision Precise reasoning about the SHA256 hash is critical. Since it is not practical to consider the
hash algorithm details every time the hash function is called in EVM bytecodes, an abstraction for the hash
function is required. Designing a sound but efficient abstraction is not trivial because while the SHA256 hash
is not cryptographically collision-free, the contract developers assume collisions will not occur during normal
execution of their contracts1. A naive way of capturing the assumption would be to simply abstract the SHA256
hash as an injective function. However, it is not sound simply because of the pigeonhole principle, and thus we
need to be careful for abstracting the hash function.

1
The assumption is not unreasonable, as virtually all blockchains rely heavily on the collision-resistance of hash functions.
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Abstractions

syntax Int ::= nthByte(Int, Int, Int) [function] 
!
!
!
rule merge(nthByte(V, 0, N) ... nthByte(V, N-1, N)) 
  ⟹ V 
  requires 0 ≤ V <  2 ^ (N * 8) 
       and 1 ≤ N ≤ 32



Challenges for EVM bytecode verification

• Byte-twiddling operations 

• Non-linear integer arithmetic 
(e.g., modulo reduction) 

• Arithmetic overflow detection 

• Gas limit 

• Variable gas cost depending on contexts 

• Hash collision



Specification example
[transfer-success] 
!
callData: 
  #abiCallData("transfer", #address(TO), #uint256(VALUE)) 
!
storage: 
  #(BALANCES[FROM]) ⟼ (BAL_FROM ⟹ BAL_FROM - VALUE) 
  #(BALANCES[TO]  ) ⟼ (BAL_TO   ⟹ BAL_TO   + VALUE) 
!
requires: 
  FROM ≠ TO 
  VALUE ≤ BAL_FROM 
  BAL_TO + VALUE < (2 ^ 256) 
!
statusCode: 
  _ ⟹ EVMC_SUCCESS 
!
output: 
  _ ⟹ #asByteArray(1, 32)

true

Smart contract example

function transfer(address from, 
                  address to, 
                  uint256 value) returns (bool) { 
!
    if ( balances[from] >= value ) { 
!
        balances[from] -= value; 
        balances[to] = SafeMath.add(balances[to], value); 
        return true; 
    } else { 
        return false; 
    } 
}
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K EVM Verifier

Why bytecode?

interface Token { 
  function transfer() returns (bool); 
} 
!
contract Wallet { 
  function transfer(address token) { 
    return Token(token).transfer(); 
  } 
}

contract GoodToken { 
  function transfer() { 
    return true; 
  } 
}

address: 0x01

contract BadToken { 
  function transfer() { } 
}

address: 0x02

if token = 0x02

* Lukas Cremer, “Missing return value bug — At least 130 tokens affected”

• Return true in Solidity 0.4.21 or earlier 

• Revert in Solidity 0.4.22 or later

https://github.com/runtimeverification/verified-smart-contracts



Backup



Overflow bug exploit
function batchTransfer(address[] receivers, uint256 value) 
    public whenNotPaused returns (bool) { 
!
  uint cnt = receivers.length; 
  uint256 amount = uint256(cnt) * value; 
  require(cnt > 0 && cnt <= 20); 
  require(value > 0 && balances[msg.sender] >= amount); 
!
  balances[msg.sender] = balances[msg.sender].sub(amount); 
!
  for (uint i = 0; i < cnt; i++) { 
    balances[receivers[i]] = balances[receivers[i]].add(value); 
    Transfer(msg.sender, receivers[i], value); 
  } 
!
  return true; 
}

overflow

missed by both Oyente and Securify at that time

* https://twitter.com/vietlq/status/989266840315727872 

* https://twitter.com/vietlq/status/989348032046157824


