Language-independent

VSel

emantics-Based Program
Verifiers for All Languages

Andrei Stefanescu Daejun Park

Shijiao Yuwen Yilong Li Grigore Rosu
Nov 2, 2016 @ OOPSLA'16

Problems with state-of-the-art verifiers

— + Missing details of language behaviors

* e.g., VCC's false positives/negatives,

undefinedness of SV-COMP benchmarks

* Fragmentation: specific to a fixed language

Missing details of language behaviors

1 wunsigned x = UINT_MAX;
2 unsigned y = X + 1;
— 3 _(assert y == 0)

VCC incorrectly reported an overflow error

Missing details of language behaviors

int assign(int *p, int x)
_(ensures *xp == x)
_(writes p)

{
return (xp = x);

}

void main() {
int r;
assign(&r, @) == assign(&r, 1);
(assert r == 1)

}

OCoOoONOUTER,WN R

=
S

£

=
N

VCC incorrectly proved it, missing non-determinism

Missing details of language behaviors

> 14% of SV-COMP’s “Correct Programs” are Undefined!

Posted on September 18, 2016 by Grigore Rosu

_ETAPS TACAS 2016

Combetitio'h on Software Verification (SV-COMP)

Last April (2016), I gave a tutorial on K at ETAPS’16 in Eindhoven, Netherlands, where I also demonstrated RV-Match. During the
week that I spent there, I heard several friends and colleagues who were involved with the Competition on Software Verification,
SV-COMP, that some of the benchmark’s correct programs appear to be undefined. What? So some of the assumed-correct C

programs that are used to evaluate the best program verifiers in the world are actually wrong programs? Continue reading -

R ————— e ——

* Grigore Rosu, https://runtimeverification.com/blog/2p=200

https://runtimeverification.com/blog/?p=200

Problems with state-of-the-art verifiers

* Missing details of language behaviors

— « Fragmentation: specific to a fixed language

+ e.g., KLEE (LLVM), JPF (JVM), Pex (.NET),
CBMC (C), SAGE (x86), ...

* Implemented similar heuristics/optimizations:
duplicating efforts

Our solution

Clear separation, yet smooth integration,
Between semantics reasoning and proof search,

Using language-independent logic & proof system

ldea: separation of concerns

Semantics Proof

Reasoning Search

Language semantics: Verification techniques:
« C(cll, gcc, clcmg, ...) o * Deductive verification
» Java (6, 7, 8, . \ Model checking

* JavaScript (ES5 E56)\ Abstract interpretation

Defined/implemented once, and reused for all others

ldea: separation of concerns

Semantics Proof

Reasoning Search

Language semantics: Verification techniques:
VCC

« C(cll, gcc, clcmg,)\ * Deductive verification

* Java (6,7, 8, . e \I?MC Model checking

* JavaScript (ES5 ESé Abstract interpretation

Defined/implemented once, and reused for all others

Language-independent verification framework

> Language-independent uniform notation (logic)

Language-independent proof systems I_

* Provides a nice interface (logic) in which both language
semantics and program properties can be described.
* Proof search in this logic becomes completely language-

independent.

Language-independent verification framework

Operational semantics

(C/Java/JavaScript

semantics)

o
Operational semantics

* Easy to define and understand than axiomatic semantics
» Require little mathematical knowledge
* Similar to implement language interpreter

« Executable, thus testable
* Important when defining real large languages

* Shown to scale to defining full language semantics

* C, Java, JavaScript, Python, PHP, ...

Language-independent verification framework

Language-independent uniform notation

(Reachability logic)

Reachability logic

* Unifying logic in which both language semantics and
program correctness properties can be specified.

reachability between “patterns”

l
re

“pattern” formula
representing a set of program states

/

* Pattern formula is FOL without predicate symbols.
» Similar to algebraic data types for pattern matching in
functional languages such as OCaml and Haskell.

o o R
Expressiveness: semantics

* In OCaml:
match e with
ADD(x,Vy) == X t+Y
SUB(x,Yy) = X — Y
MUL(x,y) => X * Yy
DIV(X,y) wheny =0 =>x /vy

o o R
Expressiveness: semantics

* In OCaml:
match e with
ADD(X,y) => X +y
SUB(x,Yy) = X — Y
MUL(x,y) => X % Y
DIV(X,y) wheny =0 =>x /vy
* In Reachability logic
ADD(X,y) => X +y
SUB(x,Yy) == X =Y
MUL(x,y) => X % Y
DIV(X,y) /\ y !'=0 =>x/1y

Expressiveness: properties

* In Hoare logic:

fun insert (v: elem, t: tree) return (t’: tree)
@requires bst(t)
@ensures bst(t’)
and keys(t') == keys(t) \union { v }

Expressiveness: properties

* In Hoare logic:

fun insert (v: elem, t: tree) return (t’: tree)
@requires bst(t)
@ensures bst(t’)
and keys(t') == keys(t) \union { v }

* In Reachability logic:

insert /\ bst(t)
=>
/\ bst(t’)
/\ keys(t’') == keys(t) \union { v }

Expressiveness

» Reachability formula can specity:
* Pre-/post-conditions
+ Safety properties by augmenting semantics
* No liveness properties yet (ongoing work)
* Pattern formula can include:
* Recursive predicates

» Separation logic formula

Language-independent verification framework

Language-independent proof systems

(Reachability logic proof systems)

Proof system S

STEP :

Language-independent proof system o v, s, « s3Freevarsio).q
.« E(@A@)# Lep) ANpr— ¢ foreach ¢ =7 ¢, € S
for deriving sequents of the form:

S, A e =7 ¢
AXIOM :

p=%¢ € SUA 18 FOL formula (logical frame)
S, Arcony =29 Ay

REFLEXIVITY :

S,ﬂl—gp:Qgp

TRANSITIVITY :
S, Arc g1 =2 ¢ S, AUC+ ¢ = 3

S, Arc g1 = ¢3
CONSEQUENCE :

For o9 SArcye=2%¢, Ee,o @
S, Arc 1 =% ¢

CASE ANALYSIS :

S, Atc @1 =>Q90 S, Akrc ¢ :>Q90

S, Akrc o1 V=L
ABSTRACTION :
S, Arc =2y X N FreeVars(¢') = 0
S, ArcIXp =2 ¢
CIRCULARITY :
S, A boupmoy) ¢ 22 ¢

S, Arc =22y

Proof system s

STEP :

Language-independent proof system o v, s, « s3Freevarsio).q
.« E(@A@)# Lep) ANpr— ¢ foreach ¢ =7 ¢, € S
for deriving sequents of the form:

S,ﬂ Fo @ :>V 90/

AXIOM :
semantics properi'y @ = ¢ € SUA Y 1s FOL formula (logical frame)
l | S, Arce Ny =2 ¢ Ny
:> / REFLEXTIVITY :
1 .
SO SO} p S, Al —¢ @
902 — 902 I_ SO = SO TRANSITIVITY :
/ S, Atc g1 =2 ¢ S,AUCH ¢ =% o3
P3 = P3 S, Atc @1 = ¢3
. CONSEQUENCE :

= o — ¢ S, Arc ¢| =2 ¢, = @) — ¢

S, Arc 1 =% ¢
CASE ANALYSIS :

S, Atc @1 =>Q90 S, Akrc ¢ :>Q90

S, Akrc o1 V=L
ABSTRACTION :
S, Arc =2y X N FreeVars(¢') = 0
S, ArcIXp =2 ¢
CIRCULARITY :
S, A boujp=op) @ =2 ¢’

S,Atc o =9 ¢’

Proof system

STEP :

Language-independent proof system o v, s, « s3Freevarsio).q

for deriving sequents of the form:

E @A) # Legg) Nor = ¢

foreach ¢, =27 ¢, € S

S, A e =7 ¢

AXIOM :
semantics properl'y @ = ¢ € SUA Y 1s FOL formula (logical frame)
: | S, Arco Ay =L ¢ Ay
:> / REFLEXIVITY :
1 .
SO SD;I' S,Ar¢p=%yp
902 —> 902 I_ SO — SO TRANSITIVITY :
/ S,ﬂl-c(pl =>Q902 S,ﬂUCI—gOZ =>Q(,03
Y3 = P3 S, Atrc g =2 ¢
. A CONSEQUENCE :
: Eoi o0 SArd =0y Egiog
. ADD(X,y) => X + vy . insert /\ bst(t) E
' SUB(x,y) => x -y P__ ' :
' MUL(X,y) => x x y : /\ bst(t’) :
: ! : /\ keys(t’) == keys(t) \union { v }:
! l : ;

CIRCULARITY :
S, A boupmoy) ¢ 22 ¢

S, Arc =22y

Language-independent verification framework

Proof automation

(Symbolic execution, SMT, Natural proofs, ...)

Proof automation

» Deductive verification
 Symbolic execution for reachability space search

» Domain reasoning (e.g., integers, bit-vectors,
floats, set, sequences, ...) using SMT

* Natural proofs technique for quantifier
instantiation for recursive heap predicates (e.g.,
list, tree, ...)

Language-independent verification framework

Operational semantics Reachability properties
(C/Java/JavaScript (Functional correctness of
semantics) heap manipulations)

Language-independent uniform notation
(Reachability logic)

Language-independent proof systems
(Reachability logic proof systems)

Proof automation
(Symbolic execution, SMT, Natural proofs, ...)

Does it really work?
* Q1: How easy to instantiate the framework?
* Q2: Is performance OK?

Evaluation

* Instantiated framework by plugging-in three language semantics.

Semantics of C
[POPL’12, PLDI’15]

C verifier

Semantics of Java Verification

[POPL’15] Framework 1000 veritior

Semantics of JavaScript
[PLDI’15]

JavaScript verifier

* Verified challenging heap-manipulating programs
implementing the same algorithms in all three languages.

Efforts

C JavA JAVASCRIPT
[Language-specific effort (days 7 4 S . tanfiating f k
Semantics changes size (#rules) 63 38 12 | ' qf‘.'q 'ng F;amewor
Semantics changes size (LOC) 468 05 49 | (additional eftort)

Instantiating efforts include:
» Fixing bugs of semantics
» Specifying heap abstractions (e.g., lists and trees)

Efforts

C Java JAVASCRIPT
Semantics development (months 40 20 4] 1 defining semantics
Semantics size (#rules) 2,572 1,587 1,378 (al dg iven)
Semantics size (LOC) 17,791 13,417 6,821 | \direddy given
[Language-specific effort (days 7 4 S . tanfiating f k
Semantics changes size (#rules) 63 38 T qf‘.'q Ing framewor
Semantics changes size (LOC) 468 95 49 (additional effort)

Instantiating efforts include:
» Fixing bugs of semantics
» Specifying heap abstractions (e.g., lists and trees)

Experiments

Programs

BST find
BST insert
BST delete
AVL find
AVL insert
AVL delete
RBT find
RBT insert
RBT delete

C
14.0
30.2
/1.7
13.0

281.3

633.7
14.5

903.8

1,902.1

Java

4.7
8.6
24.9
4.9
105.2
271.6
5.0
115.6
171.2

JS
6.3
8.2
21.2
6.4
135.0
239.6
6.8
114.5
183.6

Programs

Treap find

Treap insert
Treap delete
List reverse
List append
Bubble sort
Insertion sort
Quick sort

Merge sort

Total

Average

Time (secs)

C Java JS
14.4 4.9 6.5
67.7 23.1 18.9
90.4 28.4 33.2
11.4 4.1 5.5
14.8 7.3 5.3
66.4 38.8 31.3
61.9 31.1 44.8
79.2 47.1 48.1
170.6 87.0 66.0
4,4411 9835 981.2
246.7 54.6 54.5

Experiments

Time (secs)

Programs C Java JS Programs Java JS
BST find 14.0 4.7 I Treap find 14.4 4.9 6.5
BST insert 30.2 8.6 8.2] ILCLlRLE:l: 67.7 23.1 18.9

Full functional correctness:

insert /\ bst(t)
=>

/\ bst(t’)
/\ keys(t’) == keys(t) \union { v }

RBT delete 1,902.1 171.2 183.6 ULIGERey 170.6 87.0 66.0

Total 4,441.1 983.5 981.2
Average 246.7 54.6 54.5

Experiments

Time (secs)

Programs C Programs C Java JS
BST find 14.0 4.7 : Treap find 14.4 4.9 6.5
BST insert 30.2 8.6 : Treap insert 67.7 23.1 18.9
BST delete 71.7 24.9 Treap delete 90.4 28.4 33.2
AVL find 13.0 4.9 : List reverse 11.4 4.1 55
AVL insert List append 14.8 7.3 5.3

Performance is comparable to a state-of-the-art verifier for C,
VCDryad [PLDI'14], based on a separation logic extension of VCC:

e.g., AVL insert : 260s vs 280s (ours)

Total 4,441.1 983.5 981.2
Average 246.7 54.6 54.5

ldea: sepqrql'ion of concerns Language-independent verification framework

Semantics I: Program & Properties
Semantics
Reasoning
—_— Language-independent uniform notation (logic)

Language semantics: vee Verification techniques: |—
« C(c11, geg, clang, ...)Ja——— * Deductive verification
« Java (6, 7, 8, ...) PF i‘é"’(Model checking Proof automation
* JavaScript (ES5, ES6, ...) * Abstract interpretation
. . * Provides a nice interface (logic) in which both language

semantics and program properties can be described.

hitps://github.com/kframework/k

Defined/implemente ly language-

Evaluation Experiments

* Instantiated framework by plugging-in three language semantics. Time (secs)
Programs C Java JS Programs C Java JS

BST find 14.0 4.7 Y< I Treap find 14.4 4.9 6.5

Semantics of C
[POPL'12, PLDI'15]

C verifier BST insert 30.2 8.6 3 2l Treap insert 677 23.1 18.9

. : BST delete 717 24.9 AW Treap delete 90.4 28.4 33.2
Verification

Framework

Semantics of Java

[POPL15] Java verifier

AVL find 13.0 4.9 6.4 List reverse 1.4 4.1 5.5

AVL insert 281.3 105.2 IR List append 14.8 7.3 53
Semantics of JavaScript

AVL delete 633.7 271.6 239.6 Bubble sort 66.4 38.8 31.3
[PLD|']5]

JavaScript verifier

RBT find 14.5 5.0 R: I Insertion sort 61.9 311 44.8
RBT insert 903.8 1156 1145 [elHee 792 471 481
* Verified challenging heap-manipulating programs RBT delete [RRZ/RINRVAW SRR X W Merge sort 1706 870 66.0

implementing the same algorithms in all three languages.

Total 4,441.1 983.5 981.2
Average 246.7 54.6 54.5

https://github.com/kframework/k

