
Semantics-Based Program
Verifiers for All Languages

Andrei Stefanescu Daejun Park
Shijiao Yuwen Yilong Li Grigore Rosu

Nov 2, 2016 @ OOPSLA’16

Language-independent

Problems with state-of-the-art verifiers
• Missing details of language behaviors

• e.g., VCC’s false positives/negatives,
undefinedness of SV-COMP benchmarks

• Fragmentation: specific to a fixed language

Missing details of language behaviors

1 unsigned x = UINT_MAX;
2 unsigned y = x + 1; 
3 _(assert y == 0)

VCC incorrectly reported an overflow error

Missing details of language behaviors

 1 int assign(int *p, int x)
 2 _(ensures *p == x)
 3 _(writes p)
 4 {
 5 return (*p = x);
 6 }
 7
 8 void main() {
 9 int r;
10 assign(&r, 0) == assign(&r, 1);
11 _(assert r == 1)
12 }

VCC incorrectly proved it, missing non-determinism

Missing details of language behaviors

* Grigore Rosu, https://runtimeverification.com/blog/?p=200

https://runtimeverification.com/blog/?p=200

Problems with state-of-the-art verifiers
• Missing details of language behaviors

• Fragmentation: specific to a fixed language

• e.g., KLEE (LLVM), JPF (JVM), Pex (.NET),
CBMC (C), SAGE (x86), …

• Implemented similar heuristics/optimizations:
duplicating efforts

Our solution

Clear separation, yet smooth integration,

Between semantics reasoning and proof search,

Using language-independent logic & proof system

Idea: separation of concerns

Proof
Search

Semantics
Reasoning

Language semantics:
• C (c11, gcc, clang, …)
• Java (6, 7, 8, …)
• JavaScript (ES5, ES6, …)
• …

Verification techniques:
• Deductive verification
• Model checking
• Abstract interpretation
• …

Defined/implemented once, and reused for all others

Idea: separation of concerns

Proof
Search

Semantics
Reasoning

Language semantics:
• C (c11, gcc, clang, …)
• Java (6, 7, 8, …)
• JavaScript (ES5, ES6, …)
• …

Verification techniques:
• Deductive verification
• Model checking
• Abstract interpretation
• …

Defined/implemented once, and reused for all others

VCC

CBMCJPF

Language-independent verification framework

Semantics

Language-independent proof systems

Program & Properties

Language-independent uniform notation (logic)

Proof automation

✏

`

• Provides a nice interface (logic) in which both language
semantics and program properties can be described.

• Proof search in this logic becomes completely language-
independent.

Language-independent verification framework

Operational semantics
(C/Java/JavaScript

semantics)

Reachability properties
(Functional correctness of

heap manipulations)

Proof automation
(Symbolic execution, SMT, Natural proofs, …)

Language-independent proof systems
(Matching logic reachability proof systems)

Language-independent uniform notation
(Matching logic reachability)

Operational semantics
• Easy to define and understand than axiomatic semantics

• Require little mathematical knowledge

• Similar to implement language interpreter

• Executable, thus testable

• Important when defining real large languages

• Shown to scale to defining full language semantics

• C, Java, JavaScript, Python, PHP, …

Language-independent verification framework

Operational semantics
(C/Java/JavaScript

semantics)

Language-independent proof systems
(Reachability logic proof systems)

Reachability properties
(Functional correctness of

heap manipulations)

Language-independent uniform notation
(Reachability logic)

Proof automation
(Symbolic execution, SMT, Natural proofs, …)

Reachability logic

“pattern” formula
representing a set of program states

reachability between “patterns”

• Unifying logic in which both language semantics and
program correctness properties can be specified.

• Pattern formula is FOL without predicate symbols.
• Similar to algebraic data types for pattern matching in

functional languages such as OCaml and Haskell.

Expressiveness: semantics

match e with
| ADD(x,y) => x + y
| SUB(x,y) => x - y
| MUL(x,y) => x * y
| DIV(x,y) when y != 0 => x / y

• In OCaml:

Expressiveness: semantics

match e with
| ADD(x,y) => x + y
| SUB(x,y) => x - y
| MUL(x,y) => x * y
| DIV(x,y) when y != 0 => x / y

• In OCaml:

 ADD(x,y) => x + y
 SUB(x,y) => x - y
 MUL(x,y) => x * y
 DIV(x,y) /\ y != 0 => x / y

• In Reachability logic:

Expressiveness: properties

fun insert (v: elem, t: tree) return (t’: tree)
 @requires bst(t)
 @ensures bst(t’)
 and keys(t’) == keys(t) \union { v }

• In Hoare logic:

Expressiveness: properties

fun insert (v: elem, t: tree) return (t’: tree)
 @requires bst(t)
 @ensures bst(t’)
 and keys(t’) == keys(t) \union { v }

• In Hoare logic:

• In Reachability logic:

 insert /\ bst(t)
=>
 . /\ bst(t’)
 /\ keys(t’) == keys(t) \union { v }

Expressiveness
• Reachability formula can specify:

• Pre-/post-conditions

• Safety properties by augmenting semantics

• No liveness properties yet (ongoing work)

• Pattern formula can include:

• Recursive predicates

• Separation logic formula

Language-independent verification framework

Operational semantics
(C/Java/JavaScript

semantics)

Language-independent proof systems
(Reachability logic proof systems)

Reachability properties
(Functional correctness of

heap manipulations)

Language-independent uniform notation
(Reachability logic)

Proof automation
(Symbolic execution, SMT, Natural proofs, …)

Step :
|= '! W'l)9'r 2 S 9FreeVars('l).'l
|= ((' ^ 'l) , ?Cfg) ^ 'r ! '0 for each 'l)9 'r 2 S

S,A `C ')8 '0
Axiom :
')Q '0 2 S [A is FOL formula (logical frame)

S,A `C ' ^)Q '0 ^
Reflexivity :·
S,A ` ')Q '

Transitivity :
S,A `C '1)Q '2 S,A [C ` '2)Q '3

S,A `C '1)Q '3
Consequence :
|= '1 ! '01 S,A `C '01)Q '02 |= '02 ! '2

S,A `C '1)Q '2
Case Analysis :
S,A `C '1)Q ' S,A `C '2)Q '

S,A `C '1 _ '2)Q '

Abstraction :
S,A `C ')Q '0 X \ FreeVars('0) = ;

S,A `C 9X ')Q '0

Circularity :
S,A `C[{')Q'0} ')Q '0

S,A `C ')Q '0

Figure 4: Proof system for reachability. We assume the free
variables of 'l)9 'r in the Step proof rule are fresh (e.g.,
disjoint from those of ')8 '0). Here Q 2 {8,9}.

' matches the left-hand-side 'l of some rule in S and thus,
as S is weakly well-defined, can take a step: if (�, ⇢) |= '
then there is a 'l)9 'r 2 S and a valuation ⇢0 of the free
variables of 'l s.t. (�, ⇢0) |= 'l, and thus � has at least one
)TS -successor generated by 'l)9 'r. The second premise
ensures that each)TS -successor of a configuration matching
' matches '0: if �)TS �0 and � matches ' then there is some
rule 'l)9 'r 2 S and ⇢ : Var! T such that (�, ⇢) |= ' ^ 'l
and (�0, ⇢) |= 'r; then the second part implies �0 matches '0.

Axiom applies a trusted rule. Reflexivity and Transitivity
capture the closure properties of the reachability relation.
Reflexivity requires C empty to ensure that rules derived
with non-empty C take at least one step. Transitivity enables
the circularities as axioms for the second premise, since if
C is not empty, the first premise is guaranteed to take a step.
Consequence, Case Analysis and Abstraction are adapted
from Hoare logic. Ignoring circularities, these seven proof
rules are the formal infrastructure for symbolic execution.

Circularity has a coinductive nature, allowing us to
make new circularity claims. We typically make such claims

for code with repetitive behaviors, such as loops, recursive
functions, jumps, etc. If there is a derivation of the claim
using itself as a circularity, then the claim holds. This would
obviously be unsound if the new assumption was available
immediately, but requiring progress (taking at least on step
before circularities can be used) ensures that only diverging
executions correspond to endless invocation of a circularity.

Formally, we have the following result

Theorem 1. The proof system in Figure 4 is sound: if
S ` ')Q '0 then S |= ')Q '0 (Q 2 {9,8}). Under
some mild assumptions, it is relatively complete: given an
oracle for T , if S |= ')Q '0 then S ` ')Q '0.

The proof for the all-path case is available in [12], and for
the one-path case in [47]. When considering the completeness
of program verification logics, notice that if the logic for
specifying state properties (in this case, matching logic)
is undecidable, then the entire program verification logic
(in this case, reachability logic) is undecidable. By relative
completeness, we prove the completeness of the proof system
in Figure 4 assuming we can decide any matching logic
formula in T , which means that any undecidability comes
from T and is unavoidable. This theorem generalizes similar
results from Hoare logic, but in a language-independent
setting.

4. Reachability Logic vs. Hoare Logic
Here we briefly compare reachability logic (Section 3.3) with
Hoare logic by means of a simple example, aiming to convey
the message that verification using reachability logic is not
harder than using Hoare logic, even when done manually.

4.1 The Program and the Language
Consider the following snippet, say SUM, part of a C-like
program summing up the natural numbers smaller than n:

s = 0;
while(--n) s = s + n;

Assume a simplified language whose loops cannot break/re-
turn/jump, whose integers are arbitrarily large, and without
local variables (so blocks are used for grouping only). Fig-
ure 5 shows a reduction-style executable semantics of the
needed language fragment; with the notation explained in the
caption of Figure 5, the semantics consists of ten reduction
rules between configuration terms. Each of these rules can be
regarded as a one-path reachability rule, with side conditions
as constraints on the left-hand-side pattern of the rule. For ex-
ample, the second rule for the conditional statement becomes
the following one-path reachability rule:

hhC[if(I) S 1 else S 2]i
code

h�i
state

i
cfg

^ I ,Int 0
)9 hhC[S 1]i

code

h�i
state

i
cfg

Mathematical domain operations (+Int, etc.) are subscripted
with Int to distinguish them from the language constructs.

81

Proof system
Language-independent proof system
for deriving sequents of the form:

Step :
|= '! W'l)9'r 2 S 9FreeVars('l).'l
|= ((' ^ 'l) , ?Cfg) ^ 'r ! '0 for each 'l)9 'r 2 S

S,A `C ')8 '0
Axiom :
')Q '0 2 S [A is FOL formula (logical frame)

S,A `C ' ^)Q '0 ^
Reflexivity :·
S,A ` ')Q '

Transitivity :
S,A `C '1)Q '2 S,A [C ` '2)Q '3

S,A `C '1)Q '3
Consequence :
|= '1 ! '01 S,A `C '01)Q '02 |= '02 ! '2

S,A `C '1)Q '2
Case Analysis :
S,A `C '1)Q ' S,A `C '2)Q '

S,A `C '1 _ '2)Q '

Abstraction :
S,A `C ')Q '0 X \ FreeVars('0) = ;

S,A `C 9X ')Q '0

Circularity :
S,A `C[{')Q'0} ')Q '0

S,A `C ')Q '0

Figure 4: Proof system for reachability. We assume the free
variables of 'l)9 'r in the Step proof rule are fresh (e.g.,
disjoint from those of ')8 '0). Here Q 2 {8,9}.

' matches the left-hand-side 'l of some rule in S and thus,
as S is weakly well-defined, can take a step: if (�, ⇢) |= '
then there is a 'l)9 'r 2 S and a valuation ⇢0 of the free
variables of 'l s.t. (�, ⇢0) |= 'l, and thus � has at least one
)TS -successor generated by 'l)9 'r. The second premise
ensures that each)TS -successor of a configuration matching
' matches '0: if �)TS �0 and � matches ' then there is some
rule 'l)9 'r 2 S and ⇢ : Var! T such that (�, ⇢) |= ' ^ 'l
and (�0, ⇢) |= 'r; then the second part implies �0 matches '0.

Axiom applies a trusted rule. Reflexivity and Transitivity
capture the closure properties of the reachability relation.
Reflexivity requires C empty to ensure that rules derived
with non-empty C take at least one step. Transitivity enables
the circularities as axioms for the second premise, since if
C is not empty, the first premise is guaranteed to take a step.
Consequence, Case Analysis and Abstraction are adapted
from Hoare logic. Ignoring circularities, these seven proof
rules are the formal infrastructure for symbolic execution.

Circularity has a coinductive nature, allowing us to
make new circularity claims. We typically make such claims

for code with repetitive behaviors, such as loops, recursive
functions, jumps, etc. If there is a derivation of the claim
using itself as a circularity, then the claim holds. This would
obviously be unsound if the new assumption was available
immediately, but requiring progress (taking at least on step
before circularities can be used) ensures that only diverging
executions correspond to endless invocation of a circularity.

Formally, we have the following result

Theorem 1. The proof system in Figure 4 is sound: if
S ` ')Q '0 then S |= ')Q '0 (Q 2 {9,8}). Under
some mild assumptions, it is relatively complete: given an
oracle for T , if S |= ')Q '0 then S ` ')Q '0.

The proof for the all-path case is available in [12], and for
the one-path case in [47]. When considering the completeness
of program verification logics, notice that if the logic for
specifying state properties (in this case, matching logic)
is undecidable, then the entire program verification logic
(in this case, reachability logic) is undecidable. By relative
completeness, we prove the completeness of the proof system
in Figure 4 assuming we can decide any matching logic
formula in T , which means that any undecidability comes
from T and is unavoidable. This theorem generalizes similar
results from Hoare logic, but in a language-independent
setting.

4. Reachability Logic vs. Hoare Logic
Here we briefly compare reachability logic (Section 3.3) with
Hoare logic by means of a simple example, aiming to convey
the message that verification using reachability logic is not
harder than using Hoare logic, even when done manually.

4.1 The Program and the Language
Consider the following snippet, say SUM, part of a C-like
program summing up the natural numbers smaller than n:

s = 0;
while(--n) s = s + n;

Assume a simplified language whose loops cannot break/re-
turn/jump, whose integers are arbitrarily large, and without
local variables (so blocks are used for grouping only). Fig-
ure 5 shows a reduction-style executable semantics of the
needed language fragment; with the notation explained in the
caption of Figure 5, the semantics consists of ten reduction
rules between configuration terms. Each of these rules can be
regarded as a one-path reachability rule, with side conditions
as constraints on the left-hand-side pattern of the rule. For ex-
ample, the second rule for the conditional statement becomes
the following one-path reachability rule:

hhC[if(I) S 1 else S 2]i
code

h�i
state

i
cfg

^ I ,Int 0
)9 hhC[S 1]i

code

h�i
state

i
cfg

Mathematical domain operations (+Int, etc.) are subscripted
with Int to distinguish them from the language constructs.

81

Proof system
Language-independent proof system
for deriving sequents of the form:

semantics property

'1) '0
1

'2) '0
2

'3) '0
3...

` ') '0

Step :
|= '! W'l)9'r 2 S 9FreeVars('l).'l
|= ((' ^ 'l) , ?Cfg) ^ 'r ! '0 for each 'l)9 'r 2 S

S,A `C ')8 '0
Axiom :
')Q '0 2 S [A is FOL formula (logical frame)

S,A `C ' ^)Q '0 ^
Reflexivity :·
S,A ` ')Q '

Transitivity :
S,A `C '1)Q '2 S,A [C ` '2)Q '3

S,A `C '1)Q '3
Consequence :
|= '1 ! '01 S,A `C '01)Q '02 |= '02 ! '2

S,A `C '1)Q '2
Case Analysis :
S,A `C '1)Q ' S,A `C '2)Q '

S,A `C '1 _ '2)Q '

Abstraction :
S,A `C ')Q '0 X \ FreeVars('0) = ;

S,A `C 9X ')Q '0

Circularity :
S,A `C[{')Q'0} ')Q '0

S,A `C ')Q '0

Figure 4: Proof system for reachability. We assume the free
variables of 'l)9 'r in the Step proof rule are fresh (e.g.,
disjoint from those of ')8 '0). Here Q 2 {8,9}.

' matches the left-hand-side 'l of some rule in S and thus,
as S is weakly well-defined, can take a step: if (�, ⇢) |= '
then there is a 'l)9 'r 2 S and a valuation ⇢0 of the free
variables of 'l s.t. (�, ⇢0) |= 'l, and thus � has at least one
)TS -successor generated by 'l)9 'r. The second premise
ensures that each)TS -successor of a configuration matching
' matches '0: if �)TS �0 and � matches ' then there is some
rule 'l)9 'r 2 S and ⇢ : Var! T such that (�, ⇢) |= ' ^ 'l
and (�0, ⇢) |= 'r; then the second part implies �0 matches '0.

Axiom applies a trusted rule. Reflexivity and Transitivity
capture the closure properties of the reachability relation.
Reflexivity requires C empty to ensure that rules derived
with non-empty C take at least one step. Transitivity enables
the circularities as axioms for the second premise, since if
C is not empty, the first premise is guaranteed to take a step.
Consequence, Case Analysis and Abstraction are adapted
from Hoare logic. Ignoring circularities, these seven proof
rules are the formal infrastructure for symbolic execution.

Circularity has a coinductive nature, allowing us to
make new circularity claims. We typically make such claims

for code with repetitive behaviors, such as loops, recursive
functions, jumps, etc. If there is a derivation of the claim
using itself as a circularity, then the claim holds. This would
obviously be unsound if the new assumption was available
immediately, but requiring progress (taking at least on step
before circularities can be used) ensures that only diverging
executions correspond to endless invocation of a circularity.

Formally, we have the following result

Theorem 1. The proof system in Figure 4 is sound: if
S ` ')Q '0 then S |= ')Q '0 (Q 2 {9,8}). Under
some mild assumptions, it is relatively complete: given an
oracle for T , if S |= ')Q '0 then S ` ')Q '0.

The proof for the all-path case is available in [12], and for
the one-path case in [47]. When considering the completeness
of program verification logics, notice that if the logic for
specifying state properties (in this case, matching logic)
is undecidable, then the entire program verification logic
(in this case, reachability logic) is undecidable. By relative
completeness, we prove the completeness of the proof system
in Figure 4 assuming we can decide any matching logic
formula in T , which means that any undecidability comes
from T and is unavoidable. This theorem generalizes similar
results from Hoare logic, but in a language-independent
setting.

4. Reachability Logic vs. Hoare Logic
Here we briefly compare reachability logic (Section 3.3) with
Hoare logic by means of a simple example, aiming to convey
the message that verification using reachability logic is not
harder than using Hoare logic, even when done manually.

4.1 The Program and the Language
Consider the following snippet, say SUM, part of a C-like
program summing up the natural numbers smaller than n:

s = 0;
while(--n) s = s + n;

Assume a simplified language whose loops cannot break/re-
turn/jump, whose integers are arbitrarily large, and without
local variables (so blocks are used for grouping only). Fig-
ure 5 shows a reduction-style executable semantics of the
needed language fragment; with the notation explained in the
caption of Figure 5, the semantics consists of ten reduction
rules between configuration terms. Each of these rules can be
regarded as a one-path reachability rule, with side conditions
as constraints on the left-hand-side pattern of the rule. For ex-
ample, the second rule for the conditional statement becomes
the following one-path reachability rule:

hhC[if(I) S 1 else S 2]i
code

h�i
state

i
cfg

^ I ,Int 0
)9 hhC[S 1]i

code

h�i
state

i
cfg

Mathematical domain operations (+Int, etc.) are subscripted
with Int to distinguish them from the language constructs.

81

Proof system
Language-independent proof system
for deriving sequents of the form:

 insert /\ bst(t)
=>
 . /\ bst(t’)
 /\ keys(t’) == keys(t) \union { v }

 ADD(x,y) => x + y
 SUB(x,y) => x - y
 MUL(x,y) => x * y

...

`

semantics property

'1) '0
1

'2) '0
2

'3) '0
3...

` ') '0

Language-independent verification framework

Operational semantics
(C/Java/JavaScript

semantics)

Language-independent proof systems
(Reachability logic proof systems)

Reachability properties
(Functional correctness of

heap manipulations)

Language-independent uniform notation
(Reachability logic)

Proof automation
(Symbolic execution, SMT, Natural proofs, …)

Proof automation
• Deductive verification

• Symbolic execution for reachability space search

• Domain reasoning (e.g., integers, bit-vectors,
floats, set, sequences, …) using SMT

• Natural proofs technique for quantifier
instantiation for recursive heap predicates (e.g.,
list, tree, …)

Language-independent verification framework

Operational semantics
(C/Java/JavaScript

semantics)

Reachability properties
(Functional correctness of

heap manipulations)

Proof automation
(Symbolic execution, SMT, Natural proofs, …)

Language-independent proof systems
(Reachability logic proof systems)

Language-independent uniform notation
(Reachability logic)

Does it really work?
• Q1: How easy to instantiate the framework?
• Q2: Is performance OK?

Evaluation

Semantics of C
[POPL’12, PLDI’15]

Semantics of JavaScript
[PLDI’15]

Semantics of Java
[POPL’15]

Verification
Framework

C verifier

JavaScript verifier

Java verifier

• Instantiated framework by plugging-in three language semantics.

• Verified challenging heap-manipulating programs
implementing the same algorithms in all three languages.

Efforts

Instantiating efforts include:
• Fixing bugs of semantics
• Specifying heap abstractions (e.g., lists and trees)

instantiating framework
(additional effort)

KernelC C Java JavaScript
Programs Execution Reasoning Execution Reasoning Execution Reasoning Execution Reasoning

Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query
BST find 0.6 192 1.2 95 10.4 1,028 3.6 246 1.9 322 2.8 244 4.5 1,736 1.8 93
BST insert 0.8 336 2.9 160 23.0 2,481 7.2 414 4.1 691 4.5 342 5.4 3,394 2.8 158
BST delete 1.4 582 5.6 420 55.1 4,540 16.6 938 9.8 1,274 15.1 1,125 15.6 5,052 5.6 373
AVL find 0.6 192 1.2 95 9.9 1,028 3.1 214 2.2 322 2.7 244 4.5 1,736 1.9 93
AVL insert 6.2 1,980 42.1 1,133 210.7 12,616 70.6 1,865 42.4 3,753 62.8 2,146 102.5 26,977 32.5 1,221
AVL delete 9.5 2,933 45.4 1,758 514.8 26,003 118.9 3,883 122.2 8,144 149.4 4,866 184.3 38,591 55.3 2,233
RBT find 0.6 192 1.1 95 11.5 1,064 3.0 214 2.1 322 2.9 244 4.9 1,736 1.9 93
RBT insert 7.6 2,331 48.1 1,392 722.0 30,924 181.8 4,394 39.9 4,240 75.7 2,547 84.9 28,082 29.6 1,381
RBT delete 10.6 3,891 33.7 2,033 1593.8 50,389 308.3 15,429 95.8 8,312 75.4 4,460 144.2 51,356 39.4 2,009
Treap find 0.6 200 1.4 118 11.2 1,064 3.2 214 2.0 322 2.9 244 4.6 1,736 1.9 116
Treap insert 1.4 753 4.5 247 52.4 4,954 15.3 724 12.7 1,469 10.4 563 13.7 7,738 5.2 243
Treap delete 2.0 831 9.4 509 73.9 5,512 16.5 656 12.0 1,694 16.4 1,021 24.8 8,333 8.4 460
List reverse 0.4 142 0.3 21 6.6 815 4.8 76 1.5 222 2.6 46 5.0 1,162 0.5 20
List append 0.4 171 0.5 45 7.4 909 7.4 128 1.8 239 5.5 106 4.5 1,392 0.8 46
Bubble sort 0.9 391 26.8 190 28.4 2,401 38.0 357 3.4 589 35.4 345 5.6 2,688 25.7 145
Insertion sort 1.1 468 24.5 300 26.6 2,555 35.3 451 4.1 731 27.0 371 8.3 3,119 36.5 213
Quick sort 1.1 604 31.6 269 31.0 3,601 48.2 518 7.1 958 40.0 413 15.0 5,046 33.1 252
Merge sort 1.7 970 55.0 478 81.6 6,589 89.0 1,070 14.1 1,566 72.9 737 22.8 7,021 43.2 480
Total 47.7 17,159 335.2 9,358 3470.5 158,473 970.6 31,791 379.3 35,170 604.5 20,064 654.9 196,895 326.3 9,629

Table 1: Summary of verification experiments: ‘Execution’ shows time (seconds) and number of operational semantic steps for
symbolic execution (Section 5.1); ‘Reasoning’ shows time (seconds) and number of Z3 queries for reasoning (Section 5.2 &
5.3).

C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific e↵ort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 2: The development costs

e↵ort scales with the language complexity. The e↵ort for C
is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 2
validate our hypothesis that program verification based on
operational semantics and the K verification infrastructure is
cost e↵ective in terms of development e↵ort.

For comparison, the state-of-the-art is to define a translator
to an intermediate verification language, like Boogie, or to
define a verification condition (VC) generator. For example,
the VCC translator from C to Boogie consists of approxi-
mately 5000 lines of F# [1]. We believe that writing such a
translator takes considerably more e↵ort than we reported
for our approach in Table 2 (we do not include the time to
define the semantics into this comparison, since we assume
the semantics already exist, and they serve other purposes
as well). Moreover, we believe that one would have more
confidence in an operational semantics to handle the tricky

details of complex languages than in a translation or a VC
generator, for two reasons. First, an operational semantics
is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an
operational semantics is executable and can be thoroughly
tested. While this does not guarantee the absence of bugs (see
Section 6.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe
that developing an operational semantics has an important
advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other
purposes as well, so overall the semantics development cost
is amortized. For example, the JavaScript semantics was used
for bug finding in browsers [38].

Regarding number of annotations, our approach is compa-
rable to the state-of-the-art language-specific approaches that
do not infer invariants (VCC, Frama-C). The user provides
one specification for each recursive function and loop. The
user also provides the definitions for heap abstractions and
auxiliary functions used in specifications. The user does not
provide anything similar to ghost code or hints for the verifier.
The user may need to provide additional lemmas and those
lemmas apply to a class of programs rather than one particu-
lar program (e.g., the lemmas for list segments in Section 5.2
are shared by all sorting-related programs in all languages).

6.3 Operational Semantics Bugs
We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are
thoroughly tested on thousands of programs [8, 18, 25, 38].

88

KernelC C Java JavaScript
Programs Execution Reasoning Execution Reasoning Execution Reasoning Execution Reasoning

Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query
BST find 0.6 192 1.2 95 10.4 1,028 3.6 246 1.9 322 2.8 244 4.5 1,736 1.8 93
BST insert 0.8 336 2.9 160 23.0 2,481 7.2 414 4.1 691 4.5 342 5.4 3,394 2.8 158
BST delete 1.4 582 5.6 420 55.1 4,540 16.6 938 9.8 1,274 15.1 1,125 15.6 5,052 5.6 373
AVL find 0.6 192 1.2 95 9.9 1,028 3.1 214 2.2 322 2.7 244 4.5 1,736 1.9 93
AVL insert 6.2 1,980 42.1 1,133 210.7 12,616 70.6 1,865 42.4 3,753 62.8 2,146 102.5 26,977 32.5 1,221
AVL delete 9.5 2,933 45.4 1,758 514.8 26,003 118.9 3,883 122.2 8,144 149.4 4,866 184.3 38,591 55.3 2,233
RBT find 0.6 192 1.1 95 11.5 1,064 3.0 214 2.1 322 2.9 244 4.9 1,736 1.9 93
RBT insert 7.6 2,331 48.1 1,392 722.0 30,924 181.8 4,394 39.9 4,240 75.7 2,547 84.9 28,082 29.6 1,381
RBT delete 10.6 3,891 33.7 2,033 1593.8 50,389 308.3 15,429 95.8 8,312 75.4 4,460 144.2 51,356 39.4 2,009
Treap find 0.6 200 1.4 118 11.2 1,064 3.2 214 2.0 322 2.9 244 4.6 1,736 1.9 116
Treap insert 1.4 753 4.5 247 52.4 4,954 15.3 724 12.7 1,469 10.4 563 13.7 7,738 5.2 243
Treap delete 2.0 831 9.4 509 73.9 5,512 16.5 656 12.0 1,694 16.4 1,021 24.8 8,333 8.4 460
List reverse 0.4 142 0.3 21 6.6 815 4.8 76 1.5 222 2.6 46 5.0 1,162 0.5 20
List append 0.4 171 0.5 45 7.4 909 7.4 128 1.8 239 5.5 106 4.5 1,392 0.8 46
Bubble sort 0.9 391 26.8 190 28.4 2,401 38.0 357 3.4 589 35.4 345 5.6 2,688 25.7 145
Insertion sort 1.1 468 24.5 300 26.6 2,555 35.3 451 4.1 731 27.0 371 8.3 3,119 36.5 213
Quick sort 1.1 604 31.6 269 31.0 3,601 48.2 518 7.1 958 40.0 413 15.0 5,046 33.1 252
Merge sort 1.7 970 55.0 478 81.6 6,589 89.0 1,070 14.1 1,566 72.9 737 22.8 7,021 43.2 480
Total 47.7 17,159 335.2 9,358 3470.5 158,473 970.6 31,791 379.3 35,170 604.5 20,064 654.9 196,895 326.3 9,629

Table 1: Summary of verification experiments: ‘Execution’ shows time (seconds) and number of operational semantic steps for
symbolic execution (Section 5.1); ‘Reasoning’ shows time (seconds) and number of Z3 queries for reasoning (Section 5.2 &
5.3).

C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific e↵ort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 2: The development costs

e↵ort scales with the language complexity. The e↵ort for C
is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 2
validate our hypothesis that program verification based on
operational semantics and the K verification infrastructure is
cost e↵ective in terms of development e↵ort.

For comparison, the state-of-the-art is to define a translator
to an intermediate verification language, like Boogie, or to
define a verification condition (VC) generator. For example,
the VCC translator from C to Boogie consists of approxi-
mately 5000 lines of F# [1]. We believe that writing such a
translator takes considerably more e↵ort than we reported
for our approach in Table 2 (we do not include the time to
define the semantics into this comparison, since we assume
the semantics already exist, and they serve other purposes
as well). Moreover, we believe that one would have more
confidence in an operational semantics to handle the tricky

details of complex languages than in a translation or a VC
generator, for two reasons. First, an operational semantics
is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an
operational semantics is executable and can be thoroughly
tested. While this does not guarantee the absence of bugs (see
Section 6.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe
that developing an operational semantics has an important
advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other
purposes as well, so overall the semantics development cost
is amortized. For example, the JavaScript semantics was used
for bug finding in browsers [38].

Regarding number of annotations, our approach is compa-
rable to the state-of-the-art language-specific approaches that
do not infer invariants (VCC, Frama-C). The user provides
one specification for each recursive function and loop. The
user also provides the definitions for heap abstractions and
auxiliary functions used in specifications. The user does not
provide anything similar to ghost code or hints for the verifier.
The user may need to provide additional lemmas and those
lemmas apply to a class of programs rather than one particu-
lar program (e.g., the lemmas for list segments in Section 5.2
are shared by all sorting-related programs in all languages).

6.3 Operational Semantics Bugs
We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are
thoroughly tested on thousands of programs [8, 18, 25, 38].

88

Efforts

Instantiating efforts include:
• Fixing bugs of semantics
• Specifying heap abstractions (e.g., lists and trees)

instantiating framework
(additional effort)

KernelC C Java JavaScript
Programs Execution Reasoning Execution Reasoning Execution Reasoning Execution Reasoning

Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query
BST find 0.6 192 1.2 95 10.4 1,028 3.6 246 1.9 322 2.8 244 4.5 1,736 1.8 93
BST insert 0.8 336 2.9 160 23.0 2,481 7.2 414 4.1 691 4.5 342 5.4 3,394 2.8 158
BST delete 1.4 582 5.6 420 55.1 4,540 16.6 938 9.8 1,274 15.1 1,125 15.6 5,052 5.6 373
AVL find 0.6 192 1.2 95 9.9 1,028 3.1 214 2.2 322 2.7 244 4.5 1,736 1.9 93
AVL insert 6.2 1,980 42.1 1,133 210.7 12,616 70.6 1,865 42.4 3,753 62.8 2,146 102.5 26,977 32.5 1,221
AVL delete 9.5 2,933 45.4 1,758 514.8 26,003 118.9 3,883 122.2 8,144 149.4 4,866 184.3 38,591 55.3 2,233
RBT find 0.6 192 1.1 95 11.5 1,064 3.0 214 2.1 322 2.9 244 4.9 1,736 1.9 93
RBT insert 7.6 2,331 48.1 1,392 722.0 30,924 181.8 4,394 39.9 4,240 75.7 2,547 84.9 28,082 29.6 1,381
RBT delete 10.6 3,891 33.7 2,033 1593.8 50,389 308.3 15,429 95.8 8,312 75.4 4,460 144.2 51,356 39.4 2,009
Treap find 0.6 200 1.4 118 11.2 1,064 3.2 214 2.0 322 2.9 244 4.6 1,736 1.9 116
Treap insert 1.4 753 4.5 247 52.4 4,954 15.3 724 12.7 1,469 10.4 563 13.7 7,738 5.2 243
Treap delete 2.0 831 9.4 509 73.9 5,512 16.5 656 12.0 1,694 16.4 1,021 24.8 8,333 8.4 460
List reverse 0.4 142 0.3 21 6.6 815 4.8 76 1.5 222 2.6 46 5.0 1,162 0.5 20
List append 0.4 171 0.5 45 7.4 909 7.4 128 1.8 239 5.5 106 4.5 1,392 0.8 46
Bubble sort 0.9 391 26.8 190 28.4 2,401 38.0 357 3.4 589 35.4 345 5.6 2,688 25.7 145
Insertion sort 1.1 468 24.5 300 26.6 2,555 35.3 451 4.1 731 27.0 371 8.3 3,119 36.5 213
Quick sort 1.1 604 31.6 269 31.0 3,601 48.2 518 7.1 958 40.0 413 15.0 5,046 33.1 252
Merge sort 1.7 970 55.0 478 81.6 6,589 89.0 1,070 14.1 1,566 72.9 737 22.8 7,021 43.2 480
Total 47.7 17,159 335.2 9,358 3470.5 158,473 970.6 31,791 379.3 35,170 604.5 20,064 654.9 196,895 326.3 9,629

Table 1: Summary of verification experiments: ‘Execution’ shows time (seconds) and number of operational semantic steps for
symbolic execution (Section 5.1); ‘Reasoning’ shows time (seconds) and number of Z3 queries for reasoning (Section 5.2 &
5.3).

C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific e↵ort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 2: The development costs

e↵ort scales with the language complexity. The e↵ort for C
is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 2
validate our hypothesis that program verification based on
operational semantics and the K verification infrastructure is
cost e↵ective in terms of development e↵ort.

For comparison, the state-of-the-art is to define a translator
to an intermediate verification language, like Boogie, or to
define a verification condition (VC) generator. For example,
the VCC translator from C to Boogie consists of approxi-
mately 5000 lines of F# [1]. We believe that writing such a
translator takes considerably more e↵ort than we reported
for our approach in Table 2 (we do not include the time to
define the semantics into this comparison, since we assume
the semantics already exist, and they serve other purposes
as well). Moreover, we believe that one would have more
confidence in an operational semantics to handle the tricky

details of complex languages than in a translation or a VC
generator, for two reasons. First, an operational semantics
is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an
operational semantics is executable and can be thoroughly
tested. While this does not guarantee the absence of bugs (see
Section 6.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe
that developing an operational semantics has an important
advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other
purposes as well, so overall the semantics development cost
is amortized. For example, the JavaScript semantics was used
for bug finding in browsers [38].

Regarding number of annotations, our approach is compa-
rable to the state-of-the-art language-specific approaches that
do not infer invariants (VCC, Frama-C). The user provides
one specification for each recursive function and loop. The
user also provides the definitions for heap abstractions and
auxiliary functions used in specifications. The user does not
provide anything similar to ghost code or hints for the verifier.
The user may need to provide additional lemmas and those
lemmas apply to a class of programs rather than one particu-
lar program (e.g., the lemmas for list segments in Section 5.2
are shared by all sorting-related programs in all languages).

6.3 Operational Semantics Bugs
We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are
thoroughly tested on thousands of programs [8, 18, 25, 38].

88

defining semantics
(already given)

KernelC C Java JavaScript
Programs Execution Reasoning Execution Reasoning Execution Reasoning Execution Reasoning

Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query
BST find 0.6 192 1.2 95 10.4 1,028 3.6 246 1.9 322 2.8 244 4.5 1,736 1.8 93
BST insert 0.8 336 2.9 160 23.0 2,481 7.2 414 4.1 691 4.5 342 5.4 3,394 2.8 158
BST delete 1.4 582 5.6 420 55.1 4,540 16.6 938 9.8 1,274 15.1 1,125 15.6 5,052 5.6 373
AVL find 0.6 192 1.2 95 9.9 1,028 3.1 214 2.2 322 2.7 244 4.5 1,736 1.9 93
AVL insert 6.2 1,980 42.1 1,133 210.7 12,616 70.6 1,865 42.4 3,753 62.8 2,146 102.5 26,977 32.5 1,221
AVL delete 9.5 2,933 45.4 1,758 514.8 26,003 118.9 3,883 122.2 8,144 149.4 4,866 184.3 38,591 55.3 2,233
RBT find 0.6 192 1.1 95 11.5 1,064 3.0 214 2.1 322 2.9 244 4.9 1,736 1.9 93
RBT insert 7.6 2,331 48.1 1,392 722.0 30,924 181.8 4,394 39.9 4,240 75.7 2,547 84.9 28,082 29.6 1,381
RBT delete 10.6 3,891 33.7 2,033 1593.8 50,389 308.3 15,429 95.8 8,312 75.4 4,460 144.2 51,356 39.4 2,009
Treap find 0.6 200 1.4 118 11.2 1,064 3.2 214 2.0 322 2.9 244 4.6 1,736 1.9 116
Treap insert 1.4 753 4.5 247 52.4 4,954 15.3 724 12.7 1,469 10.4 563 13.7 7,738 5.2 243
Treap delete 2.0 831 9.4 509 73.9 5,512 16.5 656 12.0 1,694 16.4 1,021 24.8 8,333 8.4 460
List reverse 0.4 142 0.3 21 6.6 815 4.8 76 1.5 222 2.6 46 5.0 1,162 0.5 20
List append 0.4 171 0.5 45 7.4 909 7.4 128 1.8 239 5.5 106 4.5 1,392 0.8 46
Bubble sort 0.9 391 26.8 190 28.4 2,401 38.0 357 3.4 589 35.4 345 5.6 2,688 25.7 145
Insertion sort 1.1 468 24.5 300 26.6 2,555 35.3 451 4.1 731 27.0 371 8.3 3,119 36.5 213
Quick sort 1.1 604 31.6 269 31.0 3,601 48.2 518 7.1 958 40.0 413 15.0 5,046 33.1 252
Merge sort 1.7 970 55.0 478 81.6 6,589 89.0 1,070 14.1 1,566 72.9 737 22.8 7,021 43.2 480
Total 47.7 17,159 335.2 9,358 3470.5 158,473 970.6 31,791 379.3 35,170 604.5 20,064 654.9 196,895 326.3 9,629

Table 1: Summary of verification experiments: ‘Execution’ shows time (seconds) and number of operational semantic steps for
symbolic execution (Section 5.1); ‘Reasoning’ shows time (seconds) and number of Z3 queries for reasoning (Section 5.2 &
5.3).

C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific e↵ort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 2: The development costs

e↵ort scales with the language complexity. The e↵ort for C
is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 2
validate our hypothesis that program verification based on
operational semantics and the K verification infrastructure is
cost e↵ective in terms of development e↵ort.

For comparison, the state-of-the-art is to define a translator
to an intermediate verification language, like Boogie, or to
define a verification condition (VC) generator. For example,
the VCC translator from C to Boogie consists of approxi-
mately 5000 lines of F# [1]. We believe that writing such a
translator takes considerably more e↵ort than we reported
for our approach in Table 2 (we do not include the time to
define the semantics into this comparison, since we assume
the semantics already exist, and they serve other purposes
as well). Moreover, we believe that one would have more
confidence in an operational semantics to handle the tricky

details of complex languages than in a translation or a VC
generator, for two reasons. First, an operational semantics
is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an
operational semantics is executable and can be thoroughly
tested. While this does not guarantee the absence of bugs (see
Section 6.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe
that developing an operational semantics has an important
advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other
purposes as well, so overall the semantics development cost
is amortized. For example, the JavaScript semantics was used
for bug finding in browsers [38].

Regarding number of annotations, our approach is compa-
rable to the state-of-the-art language-specific approaches that
do not infer invariants (VCC, Frama-C). The user provides
one specification for each recursive function and loop. The
user also provides the definitions for heap abstractions and
auxiliary functions used in specifications. The user does not
provide anything similar to ghost code or hints for the verifier.
The user may need to provide additional lemmas and those
lemmas apply to a class of programs rather than one particu-
lar program (e.g., the lemmas for list segments in Section 5.2
are shared by all sorting-related programs in all languages).

6.3 Operational Semantics Bugs
We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are
thoroughly tested on thousands of programs [8, 18, 25, 38].

88

KernelC C Java JavaScript
Programs Execution Reasoning Execution Reasoning Execution Reasoning Execution Reasoning

Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query
BST find 0.6 192 1.2 95 10.4 1,028 3.6 246 1.9 322 2.8 244 4.5 1,736 1.8 93
BST insert 0.8 336 2.9 160 23.0 2,481 7.2 414 4.1 691 4.5 342 5.4 3,394 2.8 158
BST delete 1.4 582 5.6 420 55.1 4,540 16.6 938 9.8 1,274 15.1 1,125 15.6 5,052 5.6 373
AVL find 0.6 192 1.2 95 9.9 1,028 3.1 214 2.2 322 2.7 244 4.5 1,736 1.9 93
AVL insert 6.2 1,980 42.1 1,133 210.7 12,616 70.6 1,865 42.4 3,753 62.8 2,146 102.5 26,977 32.5 1,221
AVL delete 9.5 2,933 45.4 1,758 514.8 26,003 118.9 3,883 122.2 8,144 149.4 4,866 184.3 38,591 55.3 2,233
RBT find 0.6 192 1.1 95 11.5 1,064 3.0 214 2.1 322 2.9 244 4.9 1,736 1.9 93
RBT insert 7.6 2,331 48.1 1,392 722.0 30,924 181.8 4,394 39.9 4,240 75.7 2,547 84.9 28,082 29.6 1,381
RBT delete 10.6 3,891 33.7 2,033 1593.8 50,389 308.3 15,429 95.8 8,312 75.4 4,460 144.2 51,356 39.4 2,009
Treap find 0.6 200 1.4 118 11.2 1,064 3.2 214 2.0 322 2.9 244 4.6 1,736 1.9 116
Treap insert 1.4 753 4.5 247 52.4 4,954 15.3 724 12.7 1,469 10.4 563 13.7 7,738 5.2 243
Treap delete 2.0 831 9.4 509 73.9 5,512 16.5 656 12.0 1,694 16.4 1,021 24.8 8,333 8.4 460
List reverse 0.4 142 0.3 21 6.6 815 4.8 76 1.5 222 2.6 46 5.0 1,162 0.5 20
List append 0.4 171 0.5 45 7.4 909 7.4 128 1.8 239 5.5 106 4.5 1,392 0.8 46
Bubble sort 0.9 391 26.8 190 28.4 2,401 38.0 357 3.4 589 35.4 345 5.6 2,688 25.7 145
Insertion sort 1.1 468 24.5 300 26.6 2,555 35.3 451 4.1 731 27.0 371 8.3 3,119 36.5 213
Quick sort 1.1 604 31.6 269 31.0 3,601 48.2 518 7.1 958 40.0 413 15.0 5,046 33.1 252
Merge sort 1.7 970 55.0 478 81.6 6,589 89.0 1,070 14.1 1,566 72.9 737 22.8 7,021 43.2 480
Total 47.7 17,159 335.2 9,358 3470.5 158,473 970.6 31,791 379.3 35,170 604.5 20,064 654.9 196,895 326.3 9,629

Table 1: Summary of verification experiments: ‘Execution’ shows time (seconds) and number of operational semantic steps for
symbolic execution (Section 5.1); ‘Reasoning’ shows time (seconds) and number of Z3 queries for reasoning (Section 5.2 &
5.3).

C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific e↵ort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 2: The development costs

e↵ort scales with the language complexity. The e↵ort for C
is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 2
validate our hypothesis that program verification based on
operational semantics and the K verification infrastructure is
cost e↵ective in terms of development e↵ort.

For comparison, the state-of-the-art is to define a translator
to an intermediate verification language, like Boogie, or to
define a verification condition (VC) generator. For example,
the VCC translator from C to Boogie consists of approxi-
mately 5000 lines of F# [1]. We believe that writing such a
translator takes considerably more e↵ort than we reported
for our approach in Table 2 (we do not include the time to
define the semantics into this comparison, since we assume
the semantics already exist, and they serve other purposes
as well). Moreover, we believe that one would have more
confidence in an operational semantics to handle the tricky

details of complex languages than in a translation or a VC
generator, for two reasons. First, an operational semantics
is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an
operational semantics is executable and can be thoroughly
tested. While this does not guarantee the absence of bugs (see
Section 6.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe
that developing an operational semantics has an important
advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other
purposes as well, so overall the semantics development cost
is amortized. For example, the JavaScript semantics was used
for bug finding in browsers [38].

Regarding number of annotations, our approach is compa-
rable to the state-of-the-art language-specific approaches that
do not infer invariants (VCC, Frama-C). The user provides
one specification for each recursive function and loop. The
user also provides the definitions for heap abstractions and
auxiliary functions used in specifications. The user does not
provide anything similar to ghost code or hints for the verifier.
The user may need to provide additional lemmas and those
lemmas apply to a class of programs rather than one particu-
lar program (e.g., the lemmas for list segments in Section 5.2
are shared by all sorting-related programs in all languages).

6.3 Operational Semantics Bugs
We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are
thoroughly tested on thousands of programs [8, 18, 25, 38].

88

Experiments

Programs C Java JS

BST find 14.0 4.7 6.3

BST insert 30.2 8.6 8.2

BST delete 71.7 24.9 21.2

AVL find 13.0 4.9 6.4

AVL insert 281.3 105.2 135.0

AVL delete 633.7 271.6 239.6

RBT find 14.5 5.0 6.8

RBT insert 903.8 115.6 114.5

RBT delete 1,902.1 171.2 183.6

Programs C Java JS

Treap find 14.4 4.9 6.5

Treap insert 67.7 23.1 18.9

Treap delete 90.4 28.4 33.2

List reverse 11.4 4.1 5.5

List append 14.8 7.3 5.3

Bubble sort 66.4 38.8 31.3

Insertion sort 61.9 31.1 44.8

Quick sort 79.2 47.1 48.1

Merge sort 170.6 87.0 66.0

Total 4,441.1 983.5 981.2

Average 246.7 54.6 54.5

Time (secs)

Experiments

Programs C Java JS

BST find 14.0 4.7 6.3

BST insert 30.2 8.6 8.2

BST delete 71.7 24.9 21.2

AVL find 13.0 4.9 6.4

AVL insert 281.3 105.2 135.0

AVL delete 633.7 271.6 239.6

RBT find 14.5 5.0 6.8

RBT insert 903.8 115.6 114.5

RBT delete 1,902.1 171.2 183.6

Programs C Java JS

Treap find 14.4 4.9 6.5

Treap insert 67.7 23.1 18.9

Treap delete 90.4 28.4 33.2

List reverse 11.4 4.1 5.5

List append 14.8 7.3 5.3

Bubble sort 66.4 38.8 31.3

Insertion sort 61.9 31.1 44.8

Quick sort 79.2 47.1 48.1

Merge sort 170.6 87.0 66.0

Total 4,441.1 983.5 981.2

Average 246.7 54.6 54.5

Time (secs)

 insert /\ bst(t)
=>
 . /\ bst(t’)
 /\ keys(t’) == keys(t) \union { v }

Full functional correctness:

Experiments

Programs C Java JS

BST find 14.0 4.7 6.3

BST insert 30.2 8.6 8.2

BST delete 71.7 24.9 21.2

AVL find 13.0 4.9 6.4

AVL insert 281.3 105.2 135.0

AVL delete 633.7 271.6 239.6

RBT find 14.5 5.0 6.8

RBT insert 903.8 115.6 114.5

RBT delete 1,902.1 171.2 183.6

Programs C Java JS

Treap find 14.4 4.9 6.5

Treap insert 67.7 23.1 18.9

Treap delete 90.4 28.4 33.2

List reverse 11.4 4.1 5.5

List append 14.8 7.3 5.3

Bubble sort 66.4 38.8 31.3

Insertion sort 61.9 31.1 44.8

Quick sort 79.2 47.1 48.1

Merge sort 170.6 87.0 66.0

Total 4,441.1 983.5 981.2

Average 246.7 54.6 54.5

Time (secs)

Performance is comparable to a state-of-the-art verifier for C,
VCDryad [PLDI’14], based on a separation logic extension of VCC:
 e.g., AVL insert : 260s vs 280s (ours)

Idea: separation of concerns

Proof
Search

Semantics
Reasoning

Language semantics:
• C (c11, gcc, clang, …)
• Java (6, 7, 8, …)
• JavaScript (ES5, ES6, …)
• …

Verification techniques:
• Deductive verification
• Model checking
• Abstract interpretation
• …

Defined/implemented once, and reused for all others

VCC

CBMCJPF

Language-independent verification framework

Semantics

Language-independent proof systems

Program & Properties

Language-independent uniform notation (logic)

Proof automation

✏

`

• Provides a nice interface (logic) in which both language
semantics and program properties can be described.

• Proof search in this logic becomes completely language-
independent.

Evaluation

Semantics of C
[POPL’12, PLDI’15]

Semantics of JavaScript
[PLDI’15]

Semantics of Java
[POPL’15]

Verification
Framework

C verifier

JavaScript verifier

Java verifier

• Instantiated framework by plugging-in three language semantics.

• Verified challenging heap-manipulating programs
implementing the same algorithms in all three languages.

Experiments

Programs C Java JS

BST find 14.0 4.7 6.3

BST insert 30.2 8.6 8.2

BST delete 71.7 24.9 21.2

AVL find 13.0 4.9 6.4

AVL insert 281.3 105.2 135.0

AVL delete 633.7 271.6 239.6

RBT find 14.5 5.0 6.8

RBT insert 903.8 115.6 114.5

RBT delete 1,902.1 171.2 183.6

Programs C Java JS

Treap find 14.4 4.9 6.5

Treap insert 67.7 23.1 18.9

Treap delete 90.4 28.4 33.2

List reverse 11.4 4.1 5.5

List append 14.8 7.3 5.3

Bubble sort 66.4 38.8 31.3

Insertion sort 61.9 31.1 44.8

Quick sort 79.2 47.1 48.1

Merge sort 170.6 87.0 66.0

Total 4,441.1 983.5 981.2

Average 246.7 54.6 54.5

Time (secs)

https://github.com/kframework/k �
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������
�

�
�
�
�
��
�

��
������ �

�
�
�

Semantics-Based Program Verifiers for All Languages

Andrei S, tefănescu
University of Illinois at

Urbana-Champaign, USA
stefane1@illinois.edu

Daejun Park
University of Illinois at

Urbana-Champaign, USA
dpark69@illinois.edu

Shijiao Yuwen
University of Illinois at

Urbana-Champaign, USA
yuwen2@illinois.edu

Yilong Li
Runtime Verification, Inc., USA

yilong.li@runtimeverification.com

Grigore Ros, u
University of Illinois at Urbana-Champaign, USA

grosu@illinois.edu

Abstract
We present a language-independent verification framework
that can be instantiated with an operational semantics to auto-
matically generate a program verifier. The framework treats
both the operational semantics and the program correctness
specifications as reachability rules between matching logic
patterns, and uses the sound and relatively complete reach-
ability logic proof system to prove the specifications using
the semantics. We instantiate the framework with the seman-
tics of one academic language, KernelC, as well as with
three recent semantics of real-world languages, C, Java, and
JavaScript, developed independently of our verification infras-
tructure. We evaluate our approach empirically and show that
the generated program verifiers can check automatically the
full functional correctness of challenging heap-manipulating
programs implementing operations on list and tree data struc-
tures, like AVL trees. This is the first approach that can
turn the operational semantics of real-world languages into
correct-by-construction automatic verifiers.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—correctness proofs;
F.3.1 [Logics and Meanings Of Programs]: Specifying and
Verifying and Reasoning about Programs—mechanical veri-
fication; F.3.2 [Logics and Meanings Of Programs]: Seman-
tics of Programming Languages—operational semantics

General Terms Languages, Theory, Verification

Keywords reachability logic, matching logic, K framework

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

OOPSLA ’16, October 30-November 04 2016, Amsterdam, Netherlands
Copyright© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4444-9/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/2983990.2984027

1. Introduction
Operational semantics are easy to define and understand,
similarly to implementing an interpreter. They require little
formal training, scale up well, and, being executable, can
be tested. Thus, operational semantics are typically used as
trusted reference models for the defined languages. Despite
these advantages, they are rarely used directly for program
verification, because proofs tend to be low-level, as they work
directly with the corresponding transition system. Hoare or
dynamic logics allow higher level reasoning at the cost of
(re)defining the language as a set of abstract proof rules,
which are harder to understand and trust. The state-of-the-art
in mechanical program verification is to develop and prove
such language-specific proof systems sound w.r.t. a trusted
operational semantics [3, 26, 36], but that needs to be done
for each language separately and is labor intensive.

Defining multiple semantics for the same language and
proving the soundness of one semantics in terms of an-
other are highly uneconomical tasks when real languages
are concerned, often taking several man-years to complete.
For these reasons, many program verification tools forgo
defining an operational or an axiomatic semantics altogether,
and instead they implement ad-hoc strongest-postcondition
or weakest-precondition generation. For example, tools for C
like VCC [11] and Frama-C [21], and for Java like jStar [17]
take this approach. Sometimes this is a two step process:
first translate the high-level source code to a low-level inter-
mediate verification language (IVL), and then perform the
verification condition (VC) generation for the IVL. This leads
to some re-usability: implementing a new program verifier for
a language reduces to implementing a translator to the IVL,
and then reusing the VC generation already implemented
for the IVL. For example, VCC translates to Boogie [4] and
Frama-C translates to Why3 [21].

However, defining correct language translations is not easy.
Consider VCC. The translator consists of 5000 lines of F# [1]

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands

c� 2016 ACM. 978-1-4503-4444-9/16/11...

http://dx.doi.org/10.1145/2983990.2984027

74

https://github.com/kframework/k

